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Introduction

In the model under consideration we assume the spatially flat FRW
universe filled with the non-minimally coupled scalar field and
barotropic fluid with the equation of the state coefficient wm. The
action assumes following form

S =
1

2

∫

d
4x
√
−g

(

1

κ2
R−ε

(

gµν∂µφ∂νφ+ξRφ2
)

−2U(φ)

)

+Sm,

(1)
where κ2 = 8πG , ε = +1,−1 corresponds to canonical and
phantom scalar field, respectively, the metric signature is

(−, +, +, +), R = 6
(

ä
a

+ ȧ
a

)

is the Ricci scalar, a is the scale

factor and a dot denotes differentiation with respect to the
cosmological time and U(φ) is the scalar field potential function.
Sm is the action for the barotropic matter part.
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The dynamical equation for the scalar field we can obtain from the
variation δS/δφ = 0

φ̈ + 3Hφ̇ + ξRφ + εU ′(φ) = 0, (2)

and energy conservation condition from the variation δS/δg = 0

E = ε
1

2
φ̇2 + ε3ξH2φ2 + ε3ξH(φ2)̇ + U(φ) + ρm − 3

κ2
H2. (3)

Then conservation conditions read
3

κ2
H2 = ρφ + ρm, (4)

Ḣ = −κ2

2

[

(ρφ + pφ) + ρm(1 + wm)
]

(5)

where the energy density and the pressure of the scalar field are

ρφ = ε
1

2
φ̇2 + U(φ) + ε3ξH2φ2 + ε3ξH(φ2)̇, (6)

pφ = ε
1

2
(1 − 4ξ)φ̇2 − U(φ) + εξH(φ2)̇ − ε2ξ(1 − 6ξ)Ḣφ2 −(7)

ε3ξ(1 − 8ξ)H2φ2 + 2ξφU ′(φ). (8)
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Dynamical variables

In what follows we introduce the energy phase space variables

x ≡ κφ̇√
6H

, y ≡ κ
√

U(φ)√
3H

, z ≡ κ√
6
φ, (9)

which are suggested by the conservation condition

κ2

3H2
ρφ +

κ2

3H2
ρm = Ωφ + Ωm = 1 (10)

or in terms of the newly introduced variables

Ωφ = y2 + ε
[

(1 − 6ξ)x2 + 6ξ(x + z)2
]

= 1 − Ωm. (11)
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The acceleration equation can be rewritten to the form

Ḣ = −κ2

2

(

ρeff + peff

)

= −3

2
H2(1 + weff) (12)

where the effective equation of the state parameter reads

weff =
1

1 − ε6ξ(1 − 6ξ)z2

[

− 1 + ε(1 − 6ξ)(1 − wm)x2 +

ε2ξ(1 − 3wm)(x + z)2 + (1 + wm)(1 − y2) −
ε2ξ(1 − 6ξ)z2 − 2ξλy2z

]

(13)

where λ = −
√

6
κ

1
U(φ)

dU(φ)
dφ

.
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Dynamical system

x ′ = −(x − ε
1

2
λy2)

[

1 − ε6ξ(1 − 6ξ)z2
]

+

+
3

2
(x + 6ξz)

[

− 4

3
− 2ξλy2z + ε(1 − 6ξ)(1 − wm)x2 +

+ε2ξ(1 − 3wm) (x + z)2 + (1 + wm)(1 − y2)

]

, (14a)

y ′ = y

(

2 − 1

2
λx

)

[

1 − ε6ξ(1 − 6ξ)z2
]

+

+
3

2
y

[

− 4

3
− 2ξλy2z + ε(1 − 6ξ)(1 − wm)x2 +

+ε2ξ(1 − 3wm) (x + z)2 + (1 + wm)(1 − y2)

]

, (14b)

z ′ = x
[

1 − ε6ξ(1 − 6ξ)z2
]

, (14c)

λ′ = −λ2 (Γ − 1) x
[

1 − ε6ξ(1 − 6ξ)z2
]

. (14d)
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where Γ =
d
2U(φ)

dφ2 U(φ)
(

dU(φ)
dφ

)2 and prime denotes differentiation with

respect to time τ defined as

d

dτ
=

[

1 − ε6ξ(1 − 6ξ)z2
]

d

d ln a
. (15)

To investigate the dynamics of universe described by the dynamical
system (14) we need to define a unknown function Γ, i.e. we need
to define the potential function U(φ). In the special cases of the
system with the cosmological constant or exponential potential,
U = U0 = const. or U = U0 exp (−λφ), the dynamical system (14)
can be reduced to the 3-dimensional one due to the relation that in
the first case we have λ = 0 and Γ = 0 and in the second case
λ = const. and Γ = 1. Then dynamical system consists of three
equations (14a, 14b, 14c).
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There is another possibility of reduction of the system (14) form
4-dimensional dynamical system to 3-dimensional one. If we
assume that z = z(λ) and Γ = Γ(λ), then using (14c) and (14d)
we can find the function z(λ) from the differential equation

dz(λ)

dλ
= z ′(λ) = − 1

λ2
(

Γ(λ) − 1
) (16)

which can be integrated for some given function Γ(λ)

z(λ) = −
∫

dλ

λ2
(

Γ(λ) − 1
) . (17)
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For example if the function Γ(λ) is assumed in the following form

Γ(λ) = 1 − 1

λ2

(

α + βλ + γλ2
)

,

then in Table 1 we have gathered forms of the functions z(λ) and
corresponding potential functions U(φ) for various configurations
of values of parameters α, β and γ. As we see there are various
potential functions which are the most common used in the
literature of the subject.
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Table: Different examples of potential functions for various
configurations of parameters values of the assumed form of the Γ(λ)
function Γ(λ) = 1 − 1

λ2

(

α + βλ + γλ2
)

.

parameters z(λ) potential function U(φ)

α 6= 0, β = 0, γ = 0 λ
α

+ const. U0 exp
“

− α
2

φ2 + const.φ
”

α = 0, β 6= 0, γ = 0 ln λ
β

+ const. U0 exp
“

const.
β

exp (βφ)
”

α = 0, β = 0, γ 6= 0 − 1
γλ

+ const. U0 (γφ − const.)
1
γ

α 6= 0, β 6= 0, γ = 0
ln (α+βλ)

β
+ const. U0 exp

“

1
β

(αφ + conts. exp (βφ))
”

α 6= 0, β = 0, γ 6= 0
arctan

“q

γ
α

λ
”

√
αγ

+ const. U0
`

cos
`√

αγ(φ − const.)
´´

1
γ

α = 0, β 6= 0, γ 6= 0
ln λ−ln (β+γλ)

β
+ const. U0 (exp (const.β) + γ exp (βφ))

1
γ

α 6= 0, β 6= 0, γ 6= 0

2 arctan

0

@

β+2γλ
q

−β2+4αγ

1

A

q

−β2+4αγ

+ co. U0 exp
“

β
2γ

φ
” “

cos
“

1
2

p

−β2 + 4αγ(φ − co.)
”” 1

γ
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Of course this simple ansatz for the function Γ(λ) does not
manage all possible potential functions. Let us consider the
following function

Γ(λ) =
3

4
− σ2λ2

4
(

2 +
√

4 ± σ2λ2
)2

as one can check from (17) we receive

z(λ) = −2 +
√

4 ± σ2λ2

λ
+ const.

and this example corresponds to the Higgs potential

U(φ) = U0

(

(φ − const.)2 − σ2
)2

.

We need to stress that the discussion presented below is not
restricted to the specific potential function but is generic in the
sense that it is valid for any function Γ(λ) for which integral
defined in (17) exists.
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Dynamical system II

Then the dynamical system describing the investigated models is in
the following form

x ′ = −(x − ε
1

2
λy2)

[

1 − ε6ξ(1 − 6ξ)z(λ)2
]

+

3

2
(x + 6ξz(λ))

[

− 4

3
− 2ξλy2z(λ) + +ε(1 − 6ξ)(1 − wm)x2 +

+ε2ξ(1 − 3wm) (x + z(λ))2 + (1 + wm)(1 − y2)

]

, (18a)

y ′ = y

(

2 − 1

2
λx

)

[

1 − ε6ξ(1 − 6ξ)z(λ)2
]

+

+
3

2
y

[

− 4

3
− 2ξλy2z(λ) + ε(1 − 6ξ)(1 − wm)x2 +

+ε2ξ(1 − 3wm) (x + z(λ))2 + (1 + wm)(1 − y2)

]

, (18b)

λ′ = −λ2 (Γ(λ) − 1) x
[

1 − ε6ξ(1 − 6ξ)z(λ)2
]

. (18c)
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Table: Critical points of the system under consideration.

x∗ y∗ λ∗ weff

x∗1 = −6ξz(λ∗
1 ) y∗1 = 0 λ∗

1 : z(λ)2 = 1
ε6ξ(1−6ξ)

±∞
x∗2a = −6ξz(λ∗

2a) (y∗2a)2 = 4ξ

2ξλ∗
2a

z(λ∗
2a

)+(1+wm)
λ∗

2a : z(λ)2 = 1
ε6ξ(1−6ξ)

wm − 4ξ

x∗2b = 0 (y∗2b)2 =
2ξ(1−3wm)

(1−6ξ)
`

2ξλ∗
2b

z(λ∗
2b

)+(1+wm)
´ λ∗

2b : z(λ)2 = 1
ε6ξ(1−6ξ)

wm−2ξ
1−6ξ

x∗3a : g(x) = 0 1 y∗3a = 0 λ∗
3a : z(λ)2 = 1

ε6ξ(1−6ξ)
1
3

x∗3b = 0 y∗3b = 0 λ∗
3b : z(λ)2 = 1

ε6ξ
1
3

x∗4 = 0 y∗4 = 0 λ∗
4 : z(λ) = 0 wm

x∗5 = 0 (y∗5 )2 = 1 − ε6ξz(λ∗
5 )2 λ∗

5 : λz(λ)2 + 4z(λ) − λ
ε6ξ

= 0 −1

1
g(x) = ε(1 − 4ξ − wm)x2 + ε4ξ(1 − 3wm)z(λ∗

3a)x + 2ξ
1−6ξ

(1 − 3wm)
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Character of critical points

1 Finite scale factor singularity
eigenvalues: l1 = 6ξ, l2 = 6ξ, l3 = 12ξ,

for ξ > 0 – unstable node
for ξ < 0 – stable node

2a Fast-roll inflation
eigenvalues : l1 = 0, l2 = 12ξ, l3 = −12ξ,

non-hyperbolic critical point → the center manifold theorem

2b Slow-roll inflation
eigenvalues : l1 = l2 = l3 = 0

degenerated critical point

Orest Hrycyna and Marek SzydÃlowski Scalar field cosmology with non-minimal coupling



Character of critical points cont.

3 Radiation domination epoch generated by non-minimal
coupling
two critical points :

for phantom scalar field and ξ > 0 eigenvalues :
l1 = 0, l2 > 0, l3 < 0 – non-hyperbolic critical point
for canonical scalar field and ξ > 0 eigenvalues :
l1 = 6ξ(1 − 3wm), l2 = 12ξ, l3 = −6ξ
→ Hartman-Grobman theorem
→ linearised solution
→ weff(z) parameterisation

4 Matter domination epoch
eigenvalues :

l1,2 = −3
4

(

(1 − wm) ±
√

(1 − wm)2 − 16
3 ξ(1 − 3wm)

)

,

l3 = 3
2(1 + wm),

non-degenerated for wm 6= −1 and wm 6= 1
3

→ Hartman-Grobman theorem → linearised solution
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Character of critical points cont. 2

5 The present accelerated expansion epoch
In the most general case without assuming any specific form
of the potential function we are unable to find coordinates of
this point. In spite of this we are able to formulate general
conditions for stability of this critical point. This requires that
the real parts of the eigenvalues of the linearization matrix
calculated at this point must be negative. From the
Routh-Hurwitz test we have that the following conditions
should be fulfilled to assure stability of this critical point

Re[l1,2,3] < 0 ⇐⇒ 3ξ
h′(λ∗

5)

z ′(λ∗
5)

(y∗
5 )2 > 0 (19)

where

h(λ) = λz(λ)2 + 4z(λ) − λ

ε6ξ
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Figure: Three-dimensional phase portrait of the dynamical system under consideration for Γ(λ) = λ
α

.

Trajectories represent a twister type solution which interpolates between the radiation dominated universe (a saddle
type critical point), the matter dominated universe (an unstable focus critical point) and the accelerating universe
(a stable focus critical point).
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Figure: The evolution of weff given by the relation (13) for the non-minimally coupled canonical scalar field
ε = +1 and the positive coupling constant ξ. The sample trajectory used to plot this relation starts its evolution
at τ0 = 0 near the saddle type critical point (weff = 1/3) and then approaches an unstable focus critical point
weff = wm = 0 and next escapes to the stable deSitter state with weff = −1. The existence of a short time

interval during which weff ≃ 1
3

is the effect of the nonzero coupling constant ξ.
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Figure: The phase space portrait for the model with cosmological constant and the canonical scalar field
(ε = +1) with ξ = 1/8 and the dust matter wm = 0. The critical points are: S – the finite scale factor
singularity, RI – the rapid-roll inflation, SI – the slow-roll inflation, R – the radiation dominated era, M – the
barotropic matter dominated era and Q – the quintessence era. Note that the critical points representing the finite
scale factor singularity, the rapid-roll inflation and the slow-roll inflation have the same value of z coordinate.
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Figure: The phase space portrait for the model with cosmological constant and the phantom scalar field
(ε = −1) with ξ = 1/4 and the dust matter wm = 0. The critical points are: S – the finite scale factor
singularity, RI – the rapid-roll inflation, R – the radiation dominated era, M – the barotropic matter dominated era
and Q – the quintessence era. In the case of the phantom scalar field the critical point representing slow-roll
inflation is not present. The critical pints denoted as S , RI and R have the same value of z coordinate.
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Conclusions

We pointed out the presence of the new interesting solution
for the non-minimally coupled scalar field cosmology which we
called the twister solution (because of the shape of the
corresponding trajectory in the phase space).

This type of the solution is very interesting because in the
phase space it represents the 3-dimensional trajectory which
interpolates different stages of evolution of the universe,
namely, the radiation dominated, dust filled and accelerating
universe.

We are able to find linearised solutions around all these
intermediate phases, and hence, parameterisations for weff(a)
in different epochs of the universe history.

It is interesting that the presented structure of the phase
space is allowed only for non-zero value of coupling constant,
therefore it is a specific feature of the non-minimally coupled
scalar field cosmology.

Orest Hrycyna and Marek SzydÃlowski Scalar field cosmology with non-minimal coupling


