
The Bayesian analysis of the bakreation modelsKrzysztof Bolejko1,2, Aleksandra Kurek3 and MarekSzydªowski4,5

1Shool of Physis, University of Melbourne, VIC 3010, Australia
2Niolaus Copernius Astronomial Center, Bartyka 18, 00-716 Warsaw, Poland
3Astronomial Observatory, Jagiellonian University, Orla 171, 30-244 Kraków, Poland
4Mark Ka Complex Systems Researh Centre, Jagiellonian University, Reymonta 4,30-059 Kraków, Poland
5Department of Theoretial Physis, Faulty of Philosophy, The John Paul IICatholi University of Lublin, Al. Raªawikie 14, 20-950 Lublin, PolandE-mail: bolejko�amk.edu.pl, alex�oa.uj.edu.pl, uoszydlo�yf-kr.edu.plAbstrat. We present the Bayesian analysis of four di�erent type of bakreationmodels. These bakreation models are based on the Buhert equations. In thisapproah one onsiders a solution to the Einstein equations for a general matterdistribution and then an average of various observable quantities is taken. Suh anapproah has beome of onsiderable interest when it was shown that it an lead to anagreement with observations without resorting to dark energy.In this paper we test the models with supernovae, BAO, and CMB data. Theresults favour the ΛCDM model over the bakreation models whih were tested inthe paper. However, the tested models were based on some partiular assumptionsabout the relation between the average spatial urvature and the bakreation as wellas the relation between the urvature and urvature index. In this paper we modi�edthe latter assumption leaving the former unhanged. We found that by varying therelation between the urvature and urvature index we an obtain a better �t. Thus,some further work is still needed, espeially the relation between the bakreationand the urvature should be revisited in order to fully determine the feasibility of thebakreation models to mimi dark energy.1. IntrodutionThe Universe, as observed, is almost on all sales very inhomogeneous. However, instandard approah to osmology, it is assumed that the Universe an be desribedby the homogeneous and isotropi Friedmann�Lemaître�Robertson�Walker (FLRW)models. The FLRW models provide a remarkably preise desription of osmologialobservations but to ahieve this we need to pay one prie � in order to obtain theonordane with observations it needs to be assumed that the Universe is �lled with anunknown substane alled dark energy. However, this substane has never been observeddiretly and sine it has very unusual properties some began to ask whether dark energy



The Bayesian analysis of the bakreation models 2is real or if it is the desription of the Universe whih requires the existene of suh anexoti entity that is invalid.While it is possible that our Universe is �lled with dark energy many alternatives hasbeen already proposed: brane-world osmologies (see [1℄ for a review), f(R) osmology(see [2℄ for a review), appliation of inhomogeneous osmologial models (for a reviewsee [3℄) and others. One of reently proposed approahes is based on an averagingframework. Suh approah is motivated by the fat that the Einstein equations arenot linear, whih means that the solution of the Einstein equations for a homogeneousmatter distribution is di�erent than the averaged solution to the Einstein equationsfor a general matter distribution. In other words, the evolution of the homogeneousmodel might be slightly di�erent from the evolution of an inhomogeneous Universe,even though inhomogeneities in the Universe when averaged over a su�iently largesale might tend to be zero. The di�erene between the evolutions of a homogeneousand inhomogeneous models of the Universe is known as the bakreation e�et. Inthis approah, one onsiders a solution to the Einstein equations for a general matterdistribution and then an average of various observable quantities is taken. Under aertain assumptions suh an attempt leads to the Buhert equations [6℄. The Buhertequations are very similar to the Friedmann equations exept for the bakreation termwhih is in general non vanishing, if inhomogeneities are present. For a review on thebakreation e�et and the Buhert averaging sheme the reader is referred to [7, 8, 9℄.Based on this sheme Larena et al. have reently proposed a model [10℄, where themetri of the Universe at a given instant looks like the FLRW metri, but the evolutionof the sale fator is governed by the Buhert equations. In this paper we aim to performthe Bayesian analysis of the osmologial observations within the models proposed in[10℄.2. Homogeneous-like universe evolving inhomogeneouslyIf the averaging proedure is applied to the Einstein equations, then for irrotational,pressureless matter and 3+1 ADM spae-time foliation with a onstant lapse and avanishing shift vetor, the following equations are obtained [6℄
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The Bayesian analysis of the bakreation models 3is de�ned as a ube root of the volume:
a =
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, (4)where V0 is an initial volume.Equation (1) is ompatible with (2) if the following integrability ondition holds
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. (6)The Hamiltonian onstrains, an then be written as:

Ωm + ΩR + ΩQ = 1. (7)As an be seen ΩR +ΩQ an at like ΩΛ. Moreover, if the dispersion of the expansion islarge then Q an be large and as seen from (3), one an get aeleration (ä > 0) withoutthe need for dark energy.The template metri of the Universe - the metri whih desribes the averageduniverse an be written as
ds2 = dt2 − a(t)2

1 − k(t)r2
dr2 − a(t)2r2
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)

. (8)A similar approah, i.e. to onsider the template metri with the sale fator whihevolves aordingly to the Buhert equations instead of the Friedmann equations was�rst introdued by Paranjape and Singh [12℄, though in their model k was onstant. Themotivation for k(t) omes from the fat that the averaged spatial urvature if alulatedat one instant does not have to be the same as the averaged spatial urvature alulatedat another instant.The Buhert equations do not form a losed system. To lose these equations, andthus to alulate the evolution of the sale fator one has to introdue some furtherassumptions [6℄. One of suh assumptions an be: 〈R〉 ∼ Q [10℄. As seen from theintegrability ondition (5) this leads to
〈R〉 = 〈R〉ian and Q = −n + 2

n + 6
〈R〉ian. (9)Now, the �nal step is to derive a relation between the average spaial urvature

〈R〉 and the urvature index k. In analogy to the FLRW models the following relationan be proposed [10℄:
k =

a2〈R〉
a2

i |〈R〉i|
, → k(z) = −(n + 6)(1 − Ωm)(1 + z)−(n+2)

|(n + 6)(1 − Ωm)| . (10)In Se. 3.2.2 we will modify the above assumption and test models with di�erent relationsbetween k and 〈R〉. Summarising, the model onsidered in this paper is desribed by the



The Bayesian analysis of the bakreation models 4metri (8), but the evolution of the sale fator is governed by the Buhert equations.Employing the assumptions (9) and (10) the evolution equations redue to the followingrelation:
H = H0

√

Ωm(1 + z)3 + (1 − Ωm)(1 + z)−n. (11)As seen, this model is parametrised by two parameters: Ωm and n. The distane, using(8), an be then alulated by solving
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Ωm(1 + z)3 + (1 − Ωm)(1 + z)−n
. (12)Larena et al. [10℄ tested this model with the likelihood analysis using the supernovaand CMB data. They found that this model is in the agreement with observations. Innext setion we will perform the Bayesian analysis of this model using the supernovadata, baryon aousti osillations (BAO) and the observation of the osmi mirowavebakground (CMB) radiation.3. Bayesian analysisThe model presented in the preeding setion will be onfronted with osmologialobservations in the Bayesian framework using the CosmoNest ode [15℄ ‡ whih wasadapted to our ase. In the Bayes Theory all what we know about the vetor ofparameters (θ̄) of a given model (M) is ontained in the posterior probability densityfuntion (PDF), whih is given by

P (θ̄|D, M) =
P (D|θ̄, M)P (θ̄|M)

P (M |D)
, (13)where D denotes the set of data used in analysis; P (D|θ̄, M) is the likelihood funtion fora given model and in the rest part of the paper will be referred to as L(θ̄); P (θ̄|M) is theprior PDF, whih enables us to inlude our previous knowledge (i.e. without informationoming from the data D) about parameters under onsideration; the last quantity

P (M |D) is the normalization onstant, alled the evidene (or marginal likelihood)and is the most important quantity in the Bayesian framework of model omparison.The posterior PDF ould be simply summarize in terms of a best �t value, whih ouldbe the posterior PDF mode (the most probable value of θ̄) or the mean of the marginalposterior PDF of a given parameter (θi), whih is obtained by integration (13) overremaining parameters.
‡ The CosmoNest ode uses the nested sampling algorithm [16℄ and is a part of the CosmoMC ode[17℄.
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Figure 1. Constraints from SN data (SNLS - left panel, Union - right panel).3.1. Parameters estimation3.1.1. Supernova dataFirstly, we onsider observations of Type-Ia supernova, whih are taken from theSupernova Legay Survey [18℄ and the Union Supernova Compilation [19℄. Afteranalytial marginalization over the H0 parameter the likelihood funtion is of thefollowing form
LSN(Ωm, n) ∝ exp











−1

2











N
∑

i=1

x2
i

σ2
i

−

(

∑N
i=1

xi

σ2

i

)2

∑N
i=1

1
σ2

i





















, (14)where N is the number of data (N = 115 for SNLS sample and N = 307 for Unionsample), σi is an observational error, xi = µtheor
i − µobs

i , µobs
i = mi − M (mi�apparentmagnitude, M�absolute magnitude of SNIa) is the observed distane moduli, and

µtheor
i = 5 log10 DL + 25, where DL = cr(1 + z) is the luminosity distane, and r isgiven by (12).We assume a �at prior PDF for the model parameters in the following ranges:

Ωm ∈ [0.2, 0.6] and n ∈ [−4, 4]. The 68% and 95% ontours of the posterior PDF forthe SNLS and Union sample are presented in Fig. 1.3.1.2. CMB dataThe seond set of osmologial observations omprise measurement of the CMB angularpower spetrum. If it is assumed that the early Universe (before and up to the lastsattering instant) is well desribed by the FLRW model then the CMB power spetruman be parametrized by [20℄
lm = la(m − φm), (15)where l1, l2, l3 is a position of the �rst, seond and third peak, and
la = π

r∗
rs

, (16)



The Bayesian analysis of the bakreation models 6where r∗ is a o-moving distane to the last sattering surfae and rs is a size of thesound horizon at the last sattering instant. The funtion φm desribes the phase shiftof the m-th peak and is sensitive mainly to the pre-reombination physis. It dependson the baryon density (Ωbh
2), where h = H0/(100 Mp km s−1), on the ratio of theradiation to matter density at last sattering [ρr(z∗)/ρm(z∗) = 0.042(Ωmh2)−1(z∗/103)],where z∗ is the reombination redshift, on the spetral index (ns), and on the densityof the dark energy before reombination.We �t the position of the �rst and seond peak and the �rst trough of theCMB power spetrum [21℄. We assume that ns = 1 and neglet the density ofdark energy before reombination. r∗ = c/H0r(z∗) and r(z) is given by (12) and

rs = c(2/3keq)
√
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√

2Ωmzeq, R = 31500Ωbh
2(TCMB/2.7K)−4 and zeq =

2.5× 104Ωmh2(TCMB/2.7K)−4. We take TCMB = 2.728 and employ the �tting formulaefor z∗ as provided in Ref. [22℄.The likelihood funtion is of the following form
LCMB(Ωm, n, Ωbh
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 . (17)We assume a �at prior PDF for the model parameters in the ranges: Ωm ∈ [0.2, 0.6],
n ∈ [−4, 4], h ∈ [0.64, 0.80] (using information from HST [23℄), Ωbh

2 ∈ [0.0203, 0.0223](using information from BBN [24℄).The 68% and 95% ontours of posterior PDF (after marginalization over h and Ωbh
2)obtained in the analysis with the CMB data as well as in the analysis with the joint dataset (SNIa+CMB) (here the likelihood funtion has the following form L = LSNLCMB)are presented in Fig. 2.The posterior mode is: Ωm = 0.32, n = 0.00, h = 0.79, Ωbh

2 = 0.0223 forthe SNLS+CMB data set and Ωm = 0.36, n = 0.35, h = 0.76, Ωbh
2 = 0.0223 forthe Union+CMB data set. The mean of the marginal posterior PDF for the givenparameter (presented in Fig. 3), together with the 68% Bayesian on�dene interval(redible interval) are gathered in Table 1 and Table 2 for SNLS+CMB and Union+CMBrespetively.3.1.3. BAO dataIn addition to the geometri measurements desribed above, we study onstraintsobtained from the measured dilation sale of the BAO in the redshift spae power-spetrum of 46,748 luminous red galaxies (LRG) from the Sloan Digital Sky Survey(SDSS). The dilation sale is de�ned as

DV =

[

D2
A

cz
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]1/3

, (18)



The Bayesian analysis of the bakreation models 7

Ω
m

n

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
−4

−3

−2

−1

0

1

2

3

4

Ω
m

n

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
−4

−3

−2

−1

0

1

2

3

4

Figure 2. Constraints from SN (blue), CMB (green) and SN+CMB (blak) data(SNLS+CMB - left panel, Union+CMB - right panel).
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Figure 4. Constraints from SNIa (blue), CMB (green), BAO (red)and SNIa+CMB+BAO (blak) data sets (SNLS+CMB+BAO - left panel,Union+CMB+BAO - right panel).Table 1. Mean of the marginal posterior PDF for the model parameters together withthe 68% redible interval for the SNIa+CMB and SNIa+CMB+BAO data sets.SNLS+CMB SNLS+CMB+BAO
Ωm 0.37

+0.06
−0.04 0.42

+0.04
−0.05

n 0.87
+0.78
−0.71 1.59

+0.91
−0.85

h 0.75
+0.03
−0.03 0.73

+0.02
−0.03

Ωbh
2 0.0219

+0.0003
−0.0003 0.0219

+0.0003
−0.0003model. Despite these unertainties we proeed with the analysis to see how the BAOdata an possibly onstrain the data. As seen from Fig. 4 the measurements of thedilation sale at z = 0.35 do not put tight onstraints on parameters of the model. Athigher redshifts the onstrains will be tighter, thus the analysis of the BAO within thebakreation model will be required when future observational data is available. Thelikelihood funtion for the BAO has the following form

LBAO(Ωm, n, h) ∝ exp

[

−(Dtheor
V − Dobs

V )2

2σ2
BAO

]

. (19)We assume a �at prior PDF for the parameters within the ranges desribed above. The
68% and 95% ontours of the posterior PDF (marginalized over h and Ωbh

2 ) for thejoint onstraints from the supernovae, CMB and BAO data (with the likelihood funtionof the following form L = LSNLCMBLBAO) are presented in Fig. 4.The posterior PDF mode is: Ωm = 0.40, n = 1.48, h = 0.73, Ωbh
2 = 0.0223 for theSNLS+CMB+BAO data set and Ωm = 0.42, n = 1.14, h = 0.72, Ωbh
2 = 0.0223 for theUnion+CMB+BAO data set. The mean of the marginal posterior PDF for the givenparameters (presented in Fig. 5), together with the 68% redible interval are presentedin Table 1 and Table 2 for SNLS+CMB+BAO and Union+CMB+BAO respetively.
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Ωm 0.40
+0.04
−0.05 0.43

+0.03
−0.04

n 1.02
+0.79
−0.77 1.60

+0.80
−0.76

h 0.74
+0.03
−0.03 0.72

+0.02
−0.02

Ωbh
2 0.0219

+0.0003
−0.0003 0.0219

+0.0003
−0.00033.2. Models omparison3.2.1. ΛCDM vs the bakreation modelIn this setion we present the omparison between the model onsidered above (whihwill be referred to as model 1) and the standard osmologial model - ΛCDM model(whih will be referred to as model 0). In the Bayesian framework, models are omparednot only by their goodness of �t to the data but also by their omplexity (see [25℄ fora review). The best model from the set of models under onsideration is the one withthe greatest value of the probability in the light of data de�ned as

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
, (20)where Mi is a model under onsideration, P (Mi) is the prior probability of a model. If wehave no foundation to favour one model over another one from the set of models underonsideration we usually assume the same value of the prior quantity for all models, i.e.

P (Mi) = 1/K, where K is the number of models. P (D) is the normalization onstant.
P (D|Mi) is alled the marginal likelihood (or the evidene) and has the following form

P (D|Mi) =
∫

L(θ̄)P (θ̄|Mi)dθ̄ ≡ Ei. (21)It is onvenient to onsider the ratio of posterior probabilities for the models whih we



The Bayesian analysis of the bakreation models 10Table 3. Values of logarithm of the Bayes Fator lnBij alulated for the modelindexed by i and model indexed by j for di�erent data sets.Data set lnB01 lnB21 lnB02 lnB03 lnB31 lnB04 lnB41SNLS 0.89 −0.22 1.11 1.15 −0.25 1.06 −0.17Union 0.48 −0.13 0.61 0.74 −0.26 −0.69 −0.21SNLS+CMB 5.52 3.78 1.74 1.73 3.79 1.87 3.65Union+CMB 4.94 3.28 1.66 1.59 3.34 1.73 3.21SNLS+CMB+BAO 4.77 3.13 1.64 1.83 2.93 1.78 2.99Union+CMB+BAO 4.23 2.58 1.65 1.66 2.57 1.80 2.43want to ompare. If prior probabilities for those models are equal then the posteriorratio redues to the ratio of the evidenes. This ratio is alled the Bayes Fator(Bij ≡ Ei/Ej). The values of Bij are interpreted as follows: 0 < ln Bij < 1 asinonlusive, 1 < ln Bij < 2.5 as weak, 2.5 < ln Bij < 5 as moderate and ln Bij > 5 asstrong evidene in favour of a model indexed by i with respet to a model indexed by
j. The evidene [eq. (21)℄ was alulated using the CosmoNest ode. In addition weassumed equal values of the prior probabilities for all onsidered models and the priorPDF for the model parameters. The values of logarithm of the Bayes Fator alulatedfor the ΛCDM model (model 0) vs model 1 (i.e. the model presented in Se. 3.1) � B21� are presented in Table 3.As one an onlude the omparison in the light of the supernovae data does notgive onlusive results, this data set has not enough information to favour one modelover another one. After inlusion an information oming from the CMB there is strong(SNLS+CMB) and almost strong (Union+CMB) evidene in favour of the ΛCDM modelover the inhomogeneous one. When we inlude information oming from the BAO thevalues of the Bayes Fator beome smaller in both ases and the evidene to favour the
ΛCDM model is moderate.3.2.2. Relation between the average urvature and the urvature indexIn the preeding subsetion we ould see that the Bayesian method of model omparisonprefers the ΛCDM model over the bakreation model. We should be aware that thebakreation model � model 1 � is based on the assumptions (9) and (10). If theseassumptions are hanged it is possible to obtain a better �t. Below we present modelswhere the assumption (10) is replaed with:
• model 2

k(z) = 0. (22)We emphasize that k = 0 omes from modi�ation of the assumption (10) only. Itis not the same as assuming that 〈R〉 = 0. As seen from (5) the assumption of
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〈R〉 = 0 leads to Q ∼ a−6, whih means that the bakreation is strong in the earlyUniverse and its value dereases with time.The results of the model omparison are presented in Table 3. As an be seen, bothfor the SNIa+CMB and SNIa+CMB+BAO data sets, there is moderate evideneto favour the bakreation model with k = 0 over the model with relation (10) Notethat there is only weak evidene to favour the ΛCDM model over model 2.

• model 3
k(z) = −1

p
(1 + z)−(n+2). (23)We assume a �at prior PDF for the additional parameter in the range p ∈ [0, 100].As we ould see, model 2 �t observations better than model 1. If indeed k = 0is favoured then we should obtain that the best model with k given by (23) is theone with p = 100. However, this is not the ase, and as seen from the left panelof Fig. 6 the marginal posterior PDF is almost �at in a very wide range � there isonly a little di�erene between p = 100 and the best-�t value. The posterior PDFmode for model 3 is: Ωm = 0.20, n = −0.37, h = 0.78, Ωbh

2 = 0.0222, p = 75.80(SNLS+CMB), Ωm = 0.20, n = −0.53, h = 0.77, Ωbh
2 = 0.0221, p = 50.23(Union+CMB), Ωm = 0.27, n = −0.20, h = 0.74, Ωbh
2 = 0.0221, p = 63.71(SNLS+CMB+BAO), Ωm = 0.31, n = 0.16, h = 0.73, Ωbh

2 = 0.0223, p = 48.61(Union+CMB+BAO). The means of the marginal posterior PDF for the modelparameters are presented in Table 4. The values of logarithm of the Bayes Fatoralulated for the ΛCDM model and model 3 (ln B03) as well as for model 3 andmodel 1 (ln B31) are ompared in Table 3. As one an onlude there is weakevidene to favour the ΛCDM model over model 3 and moderate evidene in favourof model 3 over model 1 (for SNIa+CMB and SNIa+CMB+BAO data sets).
• model 4

k(z) = −(1 + z)−(n+2+m). (24)We assume a �at prior PDF for the additional parameter in the range m ∈ [0, 5].The posterior PDF mode for model 4 is: Ωm = 0.20, n = −0.58, h = 0.77, Ωbh
2 =

0.0220, p = 3.05 (SNLS+CMB), Ωm = 0.23, n = −0.56, h = 0.75, Ωbh
2 =

0.0222, m = 3.79 (Union+CMB), Ωm = 0.25, n = −0.37, h = 0.75, Ωbh
2 =

0.0221, m = 3.18 (SNLS+CMB+BAO), Ωm = 0.26, n = −0.38, h = 0.74, Ωbh
2 =

0.0220, m = 3.61 (Union+CMB+BAO). The marginal posterior PDF for theparameter m is presented in the right panel of Fig. 6. The means of the marginalposterior PDF for the model parameters are presented in Table 5. The values oflogarithm of the Bayes Fator alulated for the ΛCDM model and model 4 (lnB04)as well as for model 4 and model 1 (ln B41) are ompared in Table 3.These above results are enouraging and motivate further study of the bakreationmodels. Espeially, it is important to study other assumptions than (9) and (10). Asseen, if only assumption (10) was modi�ed (models 2-4) then not only we obtained abetter �t but also the value of Ωm realistially dereased ompared to model 1.
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Table 4. Mean of the marginal posterior PDF for the parameters of model 4 togetherwith the 68% redible interval for the SNIa+CMB and SNIa+CMB+BAO data sets.SNLS+CMB SNLS+CMB+BAO Union+CMB Union+CMB+BAO
Ωm 0.24

+0.04
−0.03 0.28

+0.06
−0.05 0.26

+0.05
−0.05 0.31

+0.06
−0.07

n −0.18
+0.28
−0.33 0.10

+0.54
−0.55 −0.13

+0.37
−0.41 0.27

+0.70
−0.67

h 0.76
+0.02
−0.02 0.74

+0.02
−0.02 0.75

+0.02
−0.02 0.73

+0.02
−0.02

Ωbh
2 0.0216

+0.0005
−0.0005 0.0216

+0.0005
−0.0006 0.0216

+0.0005
−0.0006 0.0217

+0.0005
−0.0006

p 53.18
+30.63
−31.26 54.25

+30.09
−31.01 53.99

+30.97
−31.19 53.87

+30.26
−30.43

Table 5. Mean of the marginal posterior PDF for the parameters of model 5 togetherwith the 68% redible interval for the SNIa+CMB and SNIa+CMB+BAO data sets.SNLS+CMB SNLS+CMB+BAO Union+CMB Union+CMB+BAO
Ωm 0.24

+0.04
−0.03 0.28

+0.06
−0.06 0.26

+0.05
−0.05 0.30

+0.07
−0.06

n −0.32
+0.29
−0.34 −0.06

+0.52
−0.54 −0.26

+0.40
−0.40 0.07

+0.69
−0.65

h 0.76
+0.02
−0.03 0.74

+0.02
−0.02 0.74

+0.02
−0.02 0.73

+0.02
−0.02

Ωbh
2 0.0216

+0.0005
−0.0006 0.0216

+0.0005
−0.0006 0.0216

+0.0005
−0.0006 0.0216

+0.0005
−0.0006

m 3.00
+1.34
−1.31 3.20

+1.23
−1.22 3.13

+1.29
−1.28 3.22

+1.22
−1.24



The Bayesian analysis of the bakreation models 134. ConlusionsIn this paper we presented the Bayesian analysis of the bakreation models. This workwas motivated by the reently proposed model of the inhomogeneous alternative to darkenergy [10℄. In this approah the Universe is modelled by the Buhert equations, whihdesribe the relations between the sale fator, the average spatial urvature, averagematter distribution, average expansion and shear. Larena et al. [10℄ showed that theirmodel is onsistent with supernova and CMB data. Here we inluded the BAO dataand tested this model within the Bayesian approah.Our analysis shows that the SNLS and CMB data alone strongly favours the ΛCDMmodel. With Union sample and BAO data there is almost strong evidene (lnB21 > 4)to favour the ΛCDM over the bakreation model. However, if just the best-�t modelsare ompered, then the χ2 (Union+CMB+BAO) for the ΛCDM and model 1 are 320.96and 325.36 respetively. If the χ2 distribution is assumed then for 307 numbers ofdegree of freedom for model 1 the probability that this model is true in the light ofdata is 22.6%. For omparison for the ΛCDM (308 degree of freedom) we get 29.3%.So we an see that the best-�t model 1 �ts observations almost as good as the ΛCDMmodel. Still there are some other onerns regarding this model. For example, an theassumptions (9) and (10) be justi�ed? In other words, how does the bakreation andthe spatial urvature of the real Universe evolve, and does the relation Q ∼ 〈R〉 for thereal Universe hold? Even still, the most onerning is the value of Ωm, whih is quitelarge, 0.43+0.03
−0.04. However, as it was shown in Se. 3.2.2, after the assumption (10) wasmodi�ed, we were able to obtain a better �t and, in addition, the value of Ωm dereasedto 0.31+0.06

−0.07 and 0.30+0.07
−0.06 (or even lower if the BAO data is exluded � see Tables 4 and5) for model 4 and 5 respetively. This shows, that still a lot needs to be done in theontext of the bakreation models, espeially in the study of the relation between theaverage spatial urvature and the bakreation. Currently the ΛCDM model is preferredby the observational data but it is possible that after the revision of assumptions (9)and (10) we an obtain a more satisfatory �t. We should also remember that amongdi�erent models of dark energy, here, the dark-energy-term appears as a onsequene ofinhomogeneities that are present in the Universe. Therefore, within this lass of modelsthe �deaying lambda term� reveals a new and natural interpretation.AknowledgmentsThis researh was supported by the Peter and Patriia Gruber Foundation and theInternational Astronomial Union (KB) and by Marie Curie Host Fellowships for theTransfer of Knowledge projet COCOS (Contrat No. MTKD-CT-2004-517186) (AK,MS).Referenes[1℄ Koyama K 2008 Gen. Rel. Grav. 40 421
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