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Abstract. We present the Bayesian analysis of four different type of backreaction
models. These backreaction models are based on the Buchert equations. In this
approach one considers a solution to the FEinstein equations for a general matter
distribution and then an average of various observable quantities is taken. Such an
approach has become of considerable interest when it was shown that it can lead to an
agreement with observations without resorting to dark energy.

In this paper we test the models with supernovae, BAO, and CMB data. The
results favour the ACDM model over the backreaction models which were tested in
the paper. However, the tested models were based on some particular assumptions
about the relation between the average spatial curvature and the backreaction as well
as the relation between the curvature and curvature index. In this paper we modified
the latter assumption leaving the former unchanged. We found that by varying the
relation between the curvature and curvature index we can obtain a better fit. Thus,
some further work is still needed, especially the relation between the backreaction
and the curvature should be revisited in order to fully determine the feasibility of the
backreaction models to mimic dark energy.

1. Introduction

The Universe, as observed, is almost on all scales very inhomogeneous. However, in
standard approach to cosmology, it is assumed that the Universe can be described
by the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW)
models. The FLRW models provide a remarkably precise description of cosmological
observations but to achieve this we need to pay one price — in order to obtain the
concordance with observations it needs to be assumed that the Universe is filled with an
unknown substance called dark energy. However, this substance has never been observed
directly and since it has very unusual properties some began to ask whether dark energy
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is real or if it is the description of the Universe which requires the existence of such an
exotic entity that is invalid.

While it is possible that our Universe is filled with dark energy many alternatives has
been already proposed: brane-world cosmologies (see [1]| for a review), f(R) cosmology
(see [2] for a review), application of inhomogeneous cosmological models (for a review
see [3]) and others. One of recently proposed approaches is based on an averaging
framework. Such approach is motivated by the fact that the Einstein equations are
not linear, which means that the solution of the Einstein equations for a homogeneous
matter distribution is different than the averaged solution to the Einstein equations
for a general matter distribution. In other words, the evolution of the homogeneous
model might be slightly different from the evolution of an inhomogeneous Universe,
even though inhomogeneities in the Universe when averaged over a sufficiently large
scale might tend to be zero. The difference between the evolutions of a homogeneous
and inhomogeneous models of the Universe is known as the backreaction effect. In
this approach, one considers a solution to the Einstein equations for a general matter
distribution and then an average of various observable quantities is taken. Under a
certain assumptions such an attempt leads to the Buchert equations [6]. The Buchert
equations are very similar to the Friedmann equations except for the backreaction term
which is in general non vanishing, if inhomogeneities are present. For a review on the
backreaction effect and the Buchert averaging scheme the reader is referred to [7, 8, 9].
Based on this scheme Larena et al. have recently proposed a model [10], where the
metric of the Universe at a given instant looks like the FLRW metric, but the evolution
of the scale factor is governed by the Buchert equations. In this paper we aim to perform
the Bayesian analysis of the cosmological observations within the models proposed in
[10].

2. Homogeneous-like universe evolving inhomogeneously

If the averaging procedure is applied to the Einstein equations, then for irrotational,
pressureless matter and 3+1 ADM space-time foliation with a constant lapse and a
vanishing shift vector, the following equations are obtained [6]

3% — 4xG{p) + ©, (1)
3 = 87G(p) — 2(R) — 2. )
o?) 3)

where a dot () denotes J;, (R) is an average of the spacial Ricci scalar @R, © is
the scalar of expansion, o is the shear scalar, and () is the volume average over the
hypersurface of constant time: (A) = ([ d®zv/—h)™! [ d3xv/—hA, and the scale factor a
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is defined as a cube root of the volume:

a:(%>w, ()

where Vj is an initial volume.
Equation (1) is compatible with (2) if the following integrability condition holds

1 1
Eat (QCLG) + ?8t (<R>(l2) = 0. (5)
Similarly as in the FLRW models the following parameters can be introduced:

L 817G ) Q)
H_E’ Qm_3H2<p>a QR__6H2> Q= GH2 (6)

The Hamiltonian constrains, can then be written as:

As can be seen 2z + (2o can act like 25. Moreover, if the dispersion of the expansion is
large then Q can be large and as seen from (3), one can get acceleration (@ > 0) without
the need for dark energy.

The template metric of the Universe - the metric which describes the averaged
universe can be written as

ds? = dt* — Lﬂ?dﬁ — a(t)*r? (d192 + sin? 19d902) . (8)

1 — k(t)r?

A similar approach, i.e. to consider the template metric with the scale factor which
evolves accordingly to the Buchert equations instead of the Friedmann equations was
first introduced by Paranjape and Singh [12], though in their model k was constant. The
motivation for k(¢) comes from the fact that the averaged spatial curvature if calculated
at one instant does not have to be the same as the averaged spatial curvature calculated
at another instant.

The Buchert equations do not form a closed system. To close these equations, and
thus to calculate the evolution of the scale factor one has to introduce some further
assumptions [6]. One of such assumptions can be: (R) ~ Q [10]. As seen from the
integrability condition (5) this leads to

n+ 2
n+6

Now, the final step is to derive a relation between the average spacial curvature

(R) =(R);a™ and Q= — (R);a". (9)

(R) and the curvature index k. In analogy to the FLRW models the following relation
can be proposed [10]:

a*(R) (n+6)(1 — Q) (1 + 2)~(+2)

S e O SR W H (10

In Sec. 3.2.2 we will modify the above assumption and test models with different relations

between k and (R). Summarising, the model considered in this paper is described by the
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metric (8), but the evolution of the scale factor is governed by the Buchert equations.
Employing the assumptions (9) and (10) the evolution equations reduce to the following
relation:

H = Ho\/Qu(1+ 2)3 + (1 = Q,)(1 + 2) " (11)

As seen, this model is parametrised by two parameters: €2, and n. The distance, using
(8), can be then calculated by solving

dr 1 — kr?
de $ QL 2P+ (1= Q) (T +2) (12)

Larena et al. [10] tested this model with the likelihood analysis using the supernova
and CMB data. They found that this model is in the agreement with observations. In
next section we will perform the Bayesian analysis of this model using the supernova
data, baryon acoustic oscillations (BAO) and the observation of the cosmic microwave
background (CMB) radiation.

3. Bayesian analysis

The model presented in the preceding section will be confronted with cosmological
observations in the Bayesian framework using the CosmoNest code [15] § which was
adapted to our case. In the Bayes Theory all what we know about the vector of
parameters (6) of a given model (M) is contained in the posterior probability density
function (PDF), which is given by
P(DI|6, M)P(O|M)
P(M|D) -
where D denotes the set of data used in analysis; P(D|0, M) is the likelihood function for
a given model and in the rest part of the paper will be referred to as L(f); P(0|M) is the

P(0|D, M) =

(13)

prior PDF, which enables us to include our previous knowledge (i.e. without information
coming from the data D) about parameters under consideration; the last quantity
P(M|D) is the normalization constant, called the evidence (or marginal likelihood)
and is the most important quantity in the Bayesian framework of model comparison.
The posterior PDF could be simply summarize in terms of a best fit value, which could
be the posterior PDF mode (the most probable value of §) or the mean of the marginal
posterior PDF of a given parameter (6;), which is obtained by integration (13) over
remaining parameters.

1 The CosmoNest code uses the nested sampling algorithm [16] and is a part of the CosmoMC code
[17].
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Figure 1. Constraints from SN data (SNLS - left panel, Union - right panel).

3.1. Parameters estimation

3.1.1. Supernova data

Firstly, we consider observations of Type-la supernova, which are taken from the
Supernova Legacy Survey [18] and the Union Supernova Compilation [19]. After
analytical marginalization over the H, parameter the likelihood function is of the
following form

2

E )
Lsn(Qm,n) o< exp 3 Z;— SN 1 ; (14)
=1 0 i=1 52

where N is the number of data (N = 115 for SNLS sample and N = 307 for Union
sample), o; is an observational error, x; = uther — b %% = m; — M (m;—apparent
magnitude, M-absolute magnitude of SNIa) is the observed distance moduli, and
ptheor — 5log,, Dy, + 25, where D = cr(1 + z) is the luminosity distance, and r is
given by (12).

We assume a flat prior PDF for the model parameters in the following ranges:
Q,, €10.2,0.6] and n € [—4,4]. The 68% and 95% contours of the posterior PDF for
the SNLS and Union sample are presented in Fig. 1.

3.1.2. CMB data

The second set of cosmological observations comprise measurement of the CMB angular
power spectrum. If it is assumed that the early Universe (before and up to the last
scattering instant) is well described by the FLRW model then the CMB power spectrum
can be parametrized by [20]

b = lo(m — &), (15)
where [y, 5,3 is a position of the first, second and third peak, and
lo = w2, (16)

Ts
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where r, is a co-moving distance to the last scattering surface and r, is a size of the
sound horizon at the last scattering instant. The function ¢,, describes the phase shift
of the m-th peak and is sensitive mainly to the pre-recombination physics. It depends
on the baryon density (€,h?), where h = Hy/(100 Mpc km s™'), on the ratio of the
radiation to matter density at last scattering [p,(z.)/pm(2+) = 0.042(Q,,h%) (2, /10%)],
where z, is the recombination redshift, on the spectral index (ny), and on the density
of the dark energy before recombination.

We fit the position of the first and second peak and the first trough of the
CMB power spectrum [21]. We assume that ny = 1 and neglect the density of
dark energy before recombination. r, = ¢/Hyr(z.) and r(z) is given by (12) and

Py = 0(2/3keq)/6/ Reg n[(VT+ Re+ /Ru + Req) /(14 [ Reg)], where Rey = R/(1+ 2,),
R. = R/(1 + z.), key = Ho\/2Qmzeq, B = 315000h*(Toyp/2.7K)™ and 2, =
2.5 x 10*Q,,,h2(Tepp/2.7TK) ™% We take Teyp = 2.728 and employ the fitting formulae
for z, as provided in Ref. [22].

The likelihood function is of the following form

LCMB(Qm7 n, Qbh27 h) (8

1 ([l —2208\"  [lyp —4124\* (I, —530.9)
— (=== S 2220 )«
eXp{ 2 (( 0.7 ) +< 1.9 HEE (17)

We assume a flat prior PDF for the model parameters in the ranges: €, € [0.2,0.6],
€ [—4,4], h € [0.64,0.80] (using information from HST [23]), Qph? € [0.0203, 0.0223]
(using information from BBN [24]).

The 68% and 95% contours of posterior PDF (after marginalization over h and 2,h?)
obtained in the analysis with the CMB data as well as in the analysis with the joint data
set (SNIa+CMB) (here the likelihood function has the following form L = LsyLcoyp)
are presented in Fig. 2.

The posterior mode is: €,, = 0.32, n = 0.00, h = 0.79, Qh*> = 0.0223 for
the SNLS+CMB data set and €, = 0.36, n = 0.35, h = 0.76, Q,h? = 0.0223 for
the Union+CMB data set. The mean of the marginal posterior PDF for the given
parameter (presented in Fig. 3), together with the 68% Bayesian confidence interval
(credible interval) are gathered in Table 1 and Table 2 for SNLS+CMB and Union+CMB
respectively.

3.1.3. BAO data

In addition to the geometric measurements described above, we study constraints
obtained from the measured dilation scale of the BAO in the redshift space power-
spectrum of 46,748 luminous red galaxies (LRG) from the Sloan Digital Sky Survey

(SDSS). The dilation scale is defined as
cz ]1/3

(18)

Dy = [DA 1B
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Figure 2. Constraints from SN (blue), CMB (green) and SN+CMB (black) data
(SNLS+CMB - left panel, Union+CMB - right panel).
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Figure 3. Marginal posterior PDF for model parameters (SNLS+CMB - left panel,
Union+CMB - right panel.

where D 4 is the co-moving angular diameter distance and H(z) is the Hubble parameter
in function of redshift. The measured value of the dilation scale at z = 0.35 is
1370 + 64 Mpc. It should be noted that the value of 1370 + 64 Mpc was obtained
within the framework of the linear perturbations imposed on the homogeneous FLRW
background. Instead, such analysis should be carried out within the framework of the
model considered in this paper. Otherwise, we should be aware of possible systematical
errors. When the geometry of the space time is not FLRW the possible sources of errors
are: (1) the sound horizon can be distorted and can be of different size in parallel and
perpendicular direction; (2) the expansion rate can be of different value with respect to
parallel and perpendicular direction; (3) the redshift distortions if analysed within the
inhomogeneous model, might lead to estimates different from those received within the
standard approach; (4) another source of error comes from the fact that in their analysis
Eisenstein et al. converted redshift of LRG galaxies to a distance assuming the ACDM
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Figure 4. Constraints from SNIa (blue), CMB (green), BAO (red)
and SNIa+CMB+BAO (black) data sets (SNLS+CMB-+BAO - left panel,
Union+CMB+BAO - right panel).

Table 1. Mean of the marginal posterior PDF for the model parameters together with
the 68% credible interval for the SNIa+CMB and SNTa+CMB+BAQO data sets.

SNLS+CMB SNLS+CMB+BAO

Q,, 0.37+0.06 0.4270:08

n 0.8710-78 1597034

h 0.7510-08 0.7370:03
0.0003 0.0003

Quh% 0.0219+9:0003 0.021970-0005

model. Despite these uncertainties we proceed with the analysis to see how the BAO
data can possibly constrain the data. As seen from Fig. 4 the measurements of the
dilation scale at z = 0.35 do not put tight constraints on parameters of the model. At
higher redshifts the constrains will be tighter, thus the analysis of the BAO within the
backreaction model will be required when future observational data is available. The
likelihood function for the BAO has the following form

(D€/he0r _ Dg/bs)2

2
20540

Lpao(Qm,n, h) o< exp |- (19)

We assume a flat prior PDF for the parameters within the ranges described above. The
68% and 95% contours of the posterior PDF (marginalized over h and ,h? ) for the
joint constraints from the supernovae, CMB and BAO data (with the likelihood function
of the following form L = LgyLcapLpao) are presented in Fig. 4.

The posterior PDF mode is: €, = 0.40, n = 1.48, h = 0.73, Q,h? = 0.0223 for the
SNLS+CMB+BAO data set and Q,, = 0.42, n = 1.14, h = 0.72, Quh? = 0.0223 for the
Union+CMB+BAO data set. The mean of the marginal posterior PDF for the given
parameters (presented in Fig. 5), together with the 68% credible interval are presented
in Table 1 and Table 2 for SNLS+CMB-+BAO and Union+CMB+BAO respectively.



The Bayesian analysis of the backreaction models 9

0.65 0.7 0.75 0.8 0.02 0.0205 0.02} 0.0215 0.022 0.65 0.7 0.75 0.8 0.02 0.0205 0.02% 0.0215 0.022
h Qbh h nbh

Figure 5. Marginal posterior PDF for model parameters (SNLS+CMB-+BAO - left
panel, Union+CMB+BAO - right panel).

Table 2. Mean of the marginal posterior PDF for the model parameters together with
the 68% credible interval for the SNIa+CMB and SNTa+CMB+BAQO data sets.

Union+CMB  Union+CMB-+BAO

Q,, 0.4070-04 0.43%0 0%

n 1.02+019 1.607050

h 0.74%0:03 0.7255:03
0.0003 0.0003

Qph%  0.021919:0003 0.0219%0 000a

3.2. Models comparison

3.2.1. ACDM vs the backreaction model
In this section we present the comparison between the model considered above (which
will be referred to as model 1) and the standard cosmological model - ACDM model
(which will be referred to as model 0). In the Bayesian framework, models are compared
not only by their goodness of fit to the data but also by their complexity (see [25] for
a review). The best model from the set of models under consideration is the one with
the greatest value of the probability in the light of data defined as
P(D|M;)P(M;)

PD)

where M; is a model under consideration, P(M;) is the prior probability of a model. If we

P(M;|D) = (20)

have no foundation to favour one model over another one from the set of models under
consideration we usually assume the same value of the prior quantity for all models, i.e.
P(M;) = 1/K, where K is the number of models. P(D) is the normalization constant.
P(D|M;) is called the marginal likelihood (or the evidence) and has the following form

P(D|M,) /L P(0|M,)dd = E,. (21)

It is convenient to consider the ratio of posterior probabilities for the models which we
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Table 3. Values of logarithm of the Bayes Factor In B;; calculated for the model
indexed by 7 and model indexed by j for different data sets.

Data set In BOI In Bgl In B02 In Bo3 In Bgl In Bo4 In B41
SNLS 0.89 022 1.11 1.1 -0.25 1.06 —0.17
Union 048 —-0.13 0.61 0.74 —-026 -0.69 -0.21
SNLS+CMB 5.52 3.78 1.74 1.73 3.79 1.87 3.65
Union+CMB 4.94 3.28 1.66 1.59 3.34 1.73 3.21

SNLS+CMB+BAO 4.77 3.13 1.64 1.83 2.93 1.78 2.99
Union+CMB+BAO  4.23 2.58 1.65 1.66 2.57 1.80 2.43

want to compare. If prior probabilities for those models are equal then the posterior
ratio reduces to the ratio of the evidences. This ratio is called the Bayes Factor
(Bij = E;/E;). The values of B;; are interpreted as follows: 0 < InB;; < 1 as
inconclusive, 1 < In B;; < 2.5 as weak, 2.5 < In B;; < 5 as moderate and In B;; > 5 as
strong evidence in favour of a model indexed by i with respect to a model indexed by
j. The evidence [eq. (21)] was calculated using the CosmoNest code. In addition we
assumed equal values of the prior probabilities for all considered models and the prior
PDF for the model parameters. The values of logarithm of the Bayes Factor calculated
for the ACDM model (model 0) vs model 1 (i.e. the model presented in Sec. 3.1) — By
— are presented in Table 3.

As one can conclude the comparison in the light of the supernovae data does not
give conclusive results, this data set has not enough information to favour one model
over another one. After inclusion an information coming from the CMB there is strong
(SNLS+CMB) and almost strong (Union+CMB) evidence in favour of the ACDM model
over the inhomogeneous one. When we include information coming from the BAO the
values of the Bayes Factor become smaller in both cases and the evidence to favour the
ACDM model is moderate.

3.2.2. Relation between the average curvature and the curvature index

In the preceding subsection we could see that the Bayesian method of model comparison
prefers the ACDM model over the backreaction model. We should be aware that the
backreaction model — model 1 — is based on the assumptions (9) and (10). If these
assumptions are changed it is possible to obtain a better fit. Below we present models
where the assumption (10) is replaced with:

e model 2
k(z) = 0. (22)

We emphasize that k£ = 0 comes from modification of the assumption (10) only. It
is not the same as assuming that (R) = 0. As seen from (5) the assumption of
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(R) = 0 leads to Q ~ @, which means that the backreaction is strong in the early
Universe and its value decreases with time.

The results of the model comparison are presented in Table 3. As can be seen, both
for the SNIa+CMB and SNIa+CMB+BAO data sets, there is moderate evidence
to favour the backreaction model with & = 0 over the model with relation (10) Note
that there is only weak evidence to favour the ACDM model over model 2.

e model 3

k(z) = —%(1 ) (23)
We assume a flat prior PDF for the additional parameter in the range p € [0, 100].
As we could see, model 2 fit observations better than model 1. If indeed k£ = 0
is favoured then we should obtain that the best model with & given by (23) is the
one with p = 100. However, this is not the case, and as seen from the left panel
of Fig. 6 the marginal posterior PDF is almost flat in a very wide range — there is
only a little difference between p = 100 and the best-fit value. The posterior PDF
mode for model 3 is: €, = 0.20,n = —0.37,h = 0.78, Wh? = 0.0222,p = 75.80
(SNLS+CMB), Q,, = 0.20,n = —0.53,h = 0.77,Qh* = 0.0221,p = 50.23
(Union+CMB), ©,, = 027,n = —020,h = 0.74,h*> = 0.0221,p = 63.71
(SNLS+CMB+BAO), Q,, = 0.31,n = 0.16,h = 0.73,Qh* = 0.0223,p = 48.61
(Union+CMB+BAO). The means of the marginal posterior PDF for the model
parameters are presented in Table 4. The values of logarithm of the Bayes Factor
calculated for the ACDM model and model 3 (In By) as well as for model 3 and
model 1 (In Bs;) are compared in Table 3. As one can conclude there is weak
evidence to favour the ACDM model over model 3 and moderate evidence in favour
of model 3 over model 1 (for SNIa+CMB and SNIa+CMB+BAO data sets).

e model 4
k(z) = —(1 4 z)~(nH2m), (24)

We assume a flat prior PDF for the additional parameter in the range m € [0, 5].
The posterior PDF mode for model 4 is: ,, = 0.20,n = —0.58, h = 0.77, Q,h? =
0.0220,p = 3.05 (SNLS+CMB), Q,, = 0.23,n = —0.56,h = 0.75,Qh* =
0.0222,m = 3.79 (Union+CMB), Q,, = 025,n = —0.37,h = 0.75,Qh* =
0.0221,m = 3.18 (SNLS+CMB+BAO), ,, = 0.26,n = —0.38,h = 0.74, Qh% =
0.0220,m = 3.61 (Union+CMB+BAO). The marginal posterior PDF for the
parameter m is presented in the right panel of Fig. 6. The means of the marginal
posterior PDF for the model parameters are presented in Table 5. The values of
logarithm of the Bayes Factor calculated for the ACDM model and model 4 (In By,)
as well as for model 4 and model 1 (In By;) are compared in Table 3.

These above results are encouraging and motivate further study of the backreaction
models. Especially, it is important to study other assumptions than (9) and (10). As
seen, if only assumption (10) was modified (models 2-4) then not only we obtained a
better fit but also the value of €2, realistically decreased compared to model 1.



The Bayesian analysis of the backreaction models 12

T

20 a0 60 80 100 20 20 60 80 100

N

20 a0 60 80 100 20 0 60 80 100 o 1 2 3

Figure 6. Marginal posterior PDF for the parameter p of model 3 (left panel) and
for the parameter m of model 4 (right panel). The upper figures are based on the
SNLS+CMB (first and third) and SNLS+CMB+BAO data (second and fourth). The
lower figures are based on the Union+CMB (first and third) and Union+CMB+BAO
data (second and fourth).

Table 4. Mean of the marginal posterior PDF for the parameters of model 4 together
with the 68% credible interval for the SNTa+CMB and SNIa+CMB+BAO data sets.

SNLS+CMB SNLS+CMB+BAO Union+CMB Union+CMB+BAO

Qn 024750 0.28%705 0.2670:0 0.319:0
A B I
h 0.76 2505 0.74%5 05 0.757¢ 03 0.73%¢ 05
Q,h? 0.0216f§68§§§ 0.0216$§68§§2 0.0216$§68§§g 00217}3868282))2
p 53.1813156 54.257371 01 53.99757 19 53.871 50 1

Table 5. Mean of the marginal posterior PDF for the parameters of model 5 together
with the 68% credible interval for the SNTa+CMB and SNIa+CMB+BAO data sets.

SNLS+CMB SNLS+CMB+BAO Union+CMB  Union+CMB+BAO

O 0.24195-02 0.2819-06 0.26195-02 0.3079-07
A N BT
h 0.767¢" 0.7410 0.7410 0.73+0
Wh2 0 0216+%'.00?605 0 0216+00'.%2005 0 0216+%'.002005 0 0216+%.'00%O5
b . —0.0006 . —0.0006 . —0.0006 . —0.0006

m 3.00%13] 3.20%153 3.13%1 5 3.2211 %%
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4. Conclusions

In this paper we presented the Bayesian analysis of the backreaction models. This work
was motivated by the recently proposed model of the inhomogeneous alternative to dark
energy [10]. In this approach the Universe is modelled by the Buchert equations, which
describe the relations between the scale factor, the average spatial curvature, average
matter distribution, average expansion and shear. Larena et al. [10] showed that their
model is consistent with supernova and CMB data. Here we included the BAO data
and tested this model within the Bayesian approach.

Our analysis shows that the SNLS and CMB data alone strongly favours the ACDM
model. With Union sample and BAO data there is almost strong evidence (In By > 4)
to favour the ACDM over the backreaction model. However, if just the best-fit models
are compered, then the y? (Union+CMB+BAO) for the ACDM and model 1 are 320.96
and 325.36 respectively. If the x? distribution is assumed then for 307 numbers of
degree of freedom for model 1 the probability that this model is true in the light of
data is 22.6%. For comparison for the ACDM (308 degree of freedom) we get 29.3%.
So we can see that the best-fit model 1 fits observations almost as good as the ACDM
model. Still there are some other concerns regarding this model. For example, can the
assumptions (9) and (10) be justified? In other words, how does the backreaction and
the spatial curvature of the real Universe evolve, and does the relation Q ~ (R) for the
real Universe hold? Even still, the most concerning is the value of §2,,, which is quite
large, 0.4310-05. However, as it was shown in Sec. 3.2.2, after the assumption (10) was
modified, we were able to obtain a better fit and, in addition, the value of €2, decreased
to 0.31700¢ and 0.307007 (or even lower if the BAO data is excluded — see Tables 4 and
5) for model 4 and 5 respectively. This shows, that still a lot needs to be done in the
context, of the backreaction models, especially in the study of the relation between the
average spatial curvature and the backreaction. Currently the ACDM model is preferred
by the observational data but it is possible that after the revision of assumptions (9)
and (10) we can obtain a more satisfactory fit. We should also remember that among
different models of dark energy, here, the dark-energy-term appears as a consequence of
inhomogeneities that are present in the Universe. Therefore, within this class of models
the “decaying lambda term” reveals a new and natural interpretation.
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