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t. We present the Bayesian analysis of four di�erent type of ba
krea
tionmodels. These ba
krea
tion models are based on the Bu
hert equations. In thisapproa
h one 
onsiders a solution to the Einstein equations for a general matterdistribution and then an average of various observable quantities is taken. Su
h anapproa
h has be
ome of 
onsiderable interest when it was shown that it 
an lead to anagreement with observations without resorting to dark energy.In this paper we test the models with supernovae, BAO, and CMB data. Theresults favour the ΛCDM model over the ba
krea
tion models whi
h were tested inthe paper. However, the tested models were based on some parti
ular assumptionsabout the relation between the average spatial 
urvature and the ba
krea
tion as wellas the relation between the 
urvature and 
urvature index. In this paper we modi�edthe latter assumption leaving the former un
hanged. We found that by varying therelation between the 
urvature and 
urvature index we 
an obtain a better �t. Thus,some further work is still needed, espe
ially the relation between the ba
krea
tionand the 
urvature should be revisited in order to fully determine the feasibility of theba
krea
tion models to mimi
 dark energy.1. Introdu
tionThe Universe, as observed, is almost on all s
ales very inhomogeneous. However, instandard approa
h to 
osmology, it is assumed that the Universe 
an be des
ribedby the homogeneous and isotropi
 Friedmann�Lemaître�Robertson�Walker (FLRW)models. The FLRW models provide a remarkably pre
ise des
ription of 
osmologi
alobservations but to a
hieve this we need to pay one pri
e � in order to obtain the
on
ordan
e with observations it needs to be assumed that the Universe is �lled with anunknown substan
e 
alled dark energy. However, this substan
e has never been observeddire
tly and sin
e it has very unusual properties some began to ask whether dark energy
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krea
tion models 2is real or if it is the des
ription of the Universe whi
h requires the existen
e of su
h anexoti
 entity that is invalid.While it is possible that our Universe is �lled with dark energy many alternatives hasbeen already proposed: brane-world 
osmologies (see [1℄ for a review), f(R) 
osmology(see [2℄ for a review), appli
ation of inhomogeneous 
osmologi
al models (for a reviewsee [3℄) and others. One of re
ently proposed approa
hes is based on an averagingframework. Su
h approa
h is motivated by the fa
t that the Einstein equations arenot linear, whi
h means that the solution of the Einstein equations for a homogeneousmatter distribution is di�erent than the averaged solution to the Einstein equationsfor a general matter distribution. In other words, the evolution of the homogeneousmodel might be slightly di�erent from the evolution of an inhomogeneous Universe,even though inhomogeneities in the Universe when averaged over a su�
iently larges
ale might tend to be zero. The di�eren
e between the evolutions of a homogeneousand inhomogeneous models of the Universe is known as the ba
krea
tion e�e
t. Inthis approa
h, one 
onsiders a solution to the Einstein equations for a general matterdistribution and then an average of various observable quantities is taken. Under a
ertain assumptions su
h an attempt leads to the Bu
hert equations [6℄. The Bu
hertequations are very similar to the Friedmann equations ex
ept for the ba
krea
tion termwhi
h is in general non vanishing, if inhomogeneities are present. For a review on theba
krea
tion e�e
t and the Bu
hert averaging s
heme the reader is referred to [7, 8, 9℄.Based on this s
heme Larena et al. have re
ently proposed a model [10℄, where themetri
 of the Universe at a given instant looks like the FLRW metri
, but the evolutionof the s
ale fa
tor is governed by the Bu
hert equations. In this paper we aim to performthe Bayesian analysis of the 
osmologi
al observations within the models proposed in[10℄.2. Homogeneous-like universe evolving inhomogeneouslyIf the averaging pro
edure is applied to the Einstein equations, then for irrotational,pressureless matter and 3+1 ADM spa
e-time foliation with a 
onstant lapse and avanishing shift ve
tor, the following equations are obtained [6℄
3
ä

a
= −4πG〈ρ〉 + Q, (1)

3
ȧ2

a2
= 8πG〈ρ〉 − 1

2
〈R〉 − 1

2
Q, (2)

Q ≡ 2

3

(

〈Θ2〉 − 〈Θ〉2
)

− 2〈σ2〉, (3)where a dot (̇) denotes ∂t, 〈R〉 is an average of the spa
ial Ri

i s
alar (3)R, Θ isthe s
alar of expansion, σ is the shear s
alar, and 〈 〉 is the volume average over thehypersurfa
e of 
onstant time: 〈A〉 = (
∫

d3x
√
−h)−1

∫

d3x
√
−hA, and the s
ale fa
tor a
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tion models 3is de�ned as a 
ube root of the volume:
a =

(

V

V0

)1/3

, (4)where V0 is an initial volume.Equation (1) is 
ompatible with (2) if the following integrability 
ondition holds
1

a6
∂t

(

Qa6
)

+
1

a2
∂t

(

〈R〉a2
)

= 0. (5)Similarly as in the FLRW models the following parameters 
an be introdu
ed:
H =

ȧ

a
, Ωm =

8πG

3H2
〈ρ〉, ΩR = − 〈R〉

6H2
, ΩQ = − 〈Q〉

6H2
. (6)The Hamiltonian 
onstrains, 
an then be written as:

Ωm + ΩR + ΩQ = 1. (7)As 
an be seen ΩR +ΩQ 
an a
t like ΩΛ. Moreover, if the dispersion of the expansion islarge then Q 
an be large and as seen from (3), one 
an get a

eleration (ä > 0) withoutthe need for dark energy.The template metri
 of the Universe - the metri
 whi
h des
ribes the averageduniverse 
an be written as
ds2 = dt2 − a(t)2

1 − k(t)r2
dr2 − a(t)2r2

(

dϑ2 + sin2 ϑdϕ2
)

. (8)A similar approa
h, i.e. to 
onsider the template metri
 with the s
ale fa
tor whi
hevolves a

ordingly to the Bu
hert equations instead of the Friedmann equations was�rst introdu
ed by Paranjape and Singh [12℄, though in their model k was 
onstant. Themotivation for k(t) 
omes from the fa
t that the averaged spatial 
urvature if 
al
ulatedat one instant does not have to be the same as the averaged spatial 
urvature 
al
ulatedat another instant.The Bu
hert equations do not form a 
losed system. To 
lose these equations, andthus to 
al
ulate the evolution of the s
ale fa
tor one has to introdu
e some furtherassumptions [6℄. One of su
h assumptions 
an be: 〈R〉 ∼ Q [10℄. As seen from theintegrability 
ondition (5) this leads to
〈R〉 = 〈R〉ian and Q = −n + 2

n + 6
〈R〉ian. (9)Now, the �nal step is to derive a relation between the average spa
ial 
urvature

〈R〉 and the 
urvature index k. In analogy to the FLRW models the following relation
an be proposed [10℄:
k =

a2〈R〉
a2

i |〈R〉i|
, → k(z) = −(n + 6)(1 − Ωm)(1 + z)−(n+2)

|(n + 6)(1 − Ωm)| . (10)In Se
. 3.2.2 we will modify the above assumption and test models with di�erent relationsbetween k and 〈R〉. Summarising, the model 
onsidered in this paper is des
ribed by the
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 (8), but the evolution of the s
ale fa
tor is governed by the Bu
hert equations.Employing the assumptions (9) and (10) the evolution equations redu
e to the followingrelation:
H = H0

√

Ωm(1 + z)3 + (1 − Ωm)(1 + z)−n. (11)As seen, this model is parametrised by two parameters: Ωm and n. The distan
e, using(8), 
an be then 
al
ulated by solving
dr

dz
=

√

√

√

√

1 − kr2

Ωm(1 + z)3 + (1 − Ωm)(1 + z)−n
. (12)Larena et al. [10℄ tested this model with the likelihood analysis using the supernovaand CMB data. They found that this model is in the agreement with observations. Innext se
tion we will perform the Bayesian analysis of this model using the supernovadata, baryon a
ousti
 os
illations (BAO) and the observation of the 
osmi
 mi
rowaveba
kground (CMB) radiation.3. Bayesian analysisThe model presented in the pre
eding se
tion will be 
onfronted with 
osmologi
alobservations in the Bayesian framework using the CosmoNest 
ode [15℄ ‡ whi
h wasadapted to our 
ase. In the Bayes Theory all what we know about the ve
tor ofparameters (θ̄) of a given model (M) is 
ontained in the posterior probability densityfun
tion (PDF), whi
h is given by

P (θ̄|D, M) =
P (D|θ̄, M)P (θ̄|M)

P (M |D)
, (13)where D denotes the set of data used in analysis; P (D|θ̄, M) is the likelihood fun
tion fora given model and in the rest part of the paper will be referred to as L(θ̄); P (θ̄|M) is theprior PDF, whi
h enables us to in
lude our previous knowledge (i.e. without information
oming from the data D) about parameters under 
onsideration; the last quantity

P (M |D) is the normalization 
onstant, 
alled the eviden
e (or marginal likelihood)and is the most important quantity in the Bayesian framework of model 
omparison.The posterior PDF 
ould be simply summarize in terms of a best �t value, whi
h 
ouldbe the posterior PDF mode (the most probable value of θ̄) or the mean of the marginalposterior PDF of a given parameter (θi), whi
h is obtained by integration (13) overremaining parameters.
‡ The CosmoNest 
ode uses the nested sampling algorithm [16℄ and is a part of the CosmoMC 
ode[17℄.
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Figure 1. Constraints from SN data (SNLS - left panel, Union - right panel).3.1. Parameters estimation3.1.1. Supernova dataFirstly, we 
onsider observations of Type-Ia supernova, whi
h are taken from theSupernova Lega
y Survey [18℄ and the Union Supernova Compilation [19℄. Afteranalyti
al marginalization over the H0 parameter the likelihood fun
tion is of thefollowing form
LSN(Ωm, n) ∝ exp











−1

2











N
∑

i=1

x2
i

σ2
i

−

(

∑N
i=1

xi

σ2

i

)2

∑N
i=1

1
σ2

i





















, (14)where N is the number of data (N = 115 for SNLS sample and N = 307 for Unionsample), σi is an observational error, xi = µtheor
i − µobs

i , µobs
i = mi − M (mi�apparentmagnitude, M�absolute magnitude of SNIa) is the observed distan
e moduli, and

µtheor
i = 5 log10 DL + 25, where DL = cr(1 + z) is the luminosity distan
e, and r isgiven by (12).We assume a �at prior PDF for the model parameters in the following ranges:

Ωm ∈ [0.2, 0.6] and n ∈ [−4, 4]. The 68% and 95% 
ontours of the posterior PDF forthe SNLS and Union sample are presented in Fig. 1.3.1.2. CMB dataThe se
ond set of 
osmologi
al observations 
omprise measurement of the CMB angularpower spe
trum. If it is assumed that the early Universe (before and up to the lasts
attering instant) is well des
ribed by the FLRW model then the CMB power spe
trum
an be parametrized by [20℄
lm = la(m − φm), (15)where l1, l2, l3 is a position of the �rst, se
ond and third peak, and
la = π

r∗
rs

, (16)
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krea
tion models 6where r∗ is a 
o-moving distan
e to the last s
attering surfa
e and rs is a size of thesound horizon at the last s
attering instant. The fun
tion φm des
ribes the phase shiftof the m-th peak and is sensitive mainly to the pre-re
ombination physi
s. It dependson the baryon density (Ωbh
2), where h = H0/(100 Mp
 km s−1), on the ratio of theradiation to matter density at last s
attering [ρr(z∗)/ρm(z∗) = 0.042(Ωmh2)−1(z∗/103)],where z∗ is the re
ombination redshift, on the spe
tral index (ns), and on the densityof the dark energy before re
ombination.We �t the position of the �rst and se
ond peak and the �rst trough of theCMB power spe
trum [21℄. We assume that ns = 1 and negle
t the density ofdark energy before re
ombination. r∗ = c/H0r(z∗) and r(z) is given by (12) and

rs = c(2/3keq)
√

6/Req ln[(
√

1 + R∗ +
√

R∗ + Req)/(1+
√

Req)], where Req = R/(1+ zeq),
R∗ = R/(1 + z∗), keq = H0

√

2Ωmzeq, R = 31500Ωbh
2(TCMB/2.7K)−4 and zeq =

2.5× 104Ωmh2(TCMB/2.7K)−4. We take TCMB = 2.728 and employ the �tting formulaefor z∗ as provided in Ref. [22℄.The likelihood fun
tion is of the following form
LCMB(Ωm, n, Ωbh

2, h) ∝

exp



−1

2





(

l1 − 220.8

0.7

)2

+

(

l3/2 − 412.4

1.9

)2

+

(

l2 − 530.9

3.8

)2






 . (17)We assume a �at prior PDF for the model parameters in the ranges: Ωm ∈ [0.2, 0.6],
n ∈ [−4, 4], h ∈ [0.64, 0.80] (using information from HST [23℄), Ωbh

2 ∈ [0.0203, 0.0223](using information from BBN [24℄).The 68% and 95% 
ontours of posterior PDF (after marginalization over h and Ωbh
2)obtained in the analysis with the CMB data as well as in the analysis with the joint dataset (SNIa+CMB) (here the likelihood fun
tion has the following form L = LSNLCMB)are presented in Fig. 2.The posterior mode is: Ωm = 0.32, n = 0.00, h = 0.79, Ωbh

2 = 0.0223 forthe SNLS+CMB data set and Ωm = 0.36, n = 0.35, h = 0.76, Ωbh
2 = 0.0223 forthe Union+CMB data set. The mean of the marginal posterior PDF for the givenparameter (presented in Fig. 3), together with the 68% Bayesian 
on�den
e interval(
redible interval) are gathered in Table 1 and Table 2 for SNLS+CMB and Union+CMBrespe
tively.3.1.3. BAO dataIn addition to the geometri
 measurements des
ribed above, we study 
onstraintsobtained from the measured dilation s
ale of the BAO in the redshift spa
e power-spe
trum of 46,748 luminous red galaxies (LRG) from the Sloan Digital Sky Survey(SDSS). The dilation s
ale is de�ned as

DV =

[

D2
A

cz

H(z)

]1/3

, (18)
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Figure 2. Constraints from SN (blue), CMB (green) and SN+CMB (bla
k) data(SNLS+CMB - left panel, Union+CMB - right panel).
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h2Figure 3. Marginal posterior PDF for model parameters (SNLS+CMB - left panel,Union+CMB - right panel.where DA is the 
o-moving angular diameter distan
e and H(z) is the Hubble parameterin fun
tion of redshift. The measured value of the dilation s
ale at z = 0.35 is1370 ± 64 Mp
. It should be noted that the value of 1370 ± 64 Mp
 was obtainedwithin the framework of the linear perturbations imposed on the homogeneous FLRWba
kground. Instead, su
h analysis should be 
arried out within the framework of themodel 
onsidered in this paper. Otherwise, we should be aware of possible systemati
alerrors. When the geometry of the spa
e time is not FLRW the possible sour
es of errorsare: (1) the sound horizon 
an be distorted and 
an be of di�erent size in parallel andperpendi
ular dire
tion; (2) the expansion rate 
an be of di�erent value with respe
t toparallel and perpendi
ular dire
tion; (3) the redshift distortions if analysed within theinhomogeneous model, might lead to estimates di�erent from those re
eived within thestandard approa
h; (4) another sour
e of error 
omes from the fa
t that in their analysisEisenstein et al. 
onverted redshift of LRG galaxies to a distan
e assuming the ΛCDM
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Figure 4. Constraints from SNIa (blue), CMB (green), BAO (red)and SNIa+CMB+BAO (bla
k) data sets (SNLS+CMB+BAO - left panel,Union+CMB+BAO - right panel).Table 1. Mean of the marginal posterior PDF for the model parameters together withthe 68% 
redible interval for the SNIa+CMB and SNIa+CMB+BAO data sets.SNLS+CMB SNLS+CMB+BAO
Ωm 0.37

+0.06
−0.04 0.42

+0.04
−0.05

n 0.87
+0.78
−0.71 1.59

+0.91
−0.85

h 0.75
+0.03
−0.03 0.73

+0.02
−0.03

Ωbh
2 0.0219

+0.0003
−0.0003 0.0219

+0.0003
−0.0003model. Despite these un
ertainties we pro
eed with the analysis to see how the BAOdata 
an possibly 
onstrain the data. As seen from Fig. 4 the measurements of thedilation s
ale at z = 0.35 do not put tight 
onstraints on parameters of the model. Athigher redshifts the 
onstrains will be tighter, thus the analysis of the BAO within theba
krea
tion model will be required when future observational data is available. Thelikelihood fun
tion for the BAO has the following form

LBAO(Ωm, n, h) ∝ exp

[

−(Dtheor
V − Dobs

V )2

2σ2
BAO

]

. (19)We assume a �at prior PDF for the parameters within the ranges des
ribed above. The
68% and 95% 
ontours of the posterior PDF (marginalized over h and Ωbh

2 ) for thejoint 
onstraints from the supernovae, CMB and BAO data (with the likelihood fun
tionof the following form L = LSNLCMBLBAO) are presented in Fig. 4.The posterior PDF mode is: Ωm = 0.40, n = 1.48, h = 0.73, Ωbh
2 = 0.0223 for theSNLS+CMB+BAO data set and Ωm = 0.42, n = 1.14, h = 0.72, Ωbh
2 = 0.0223 for theUnion+CMB+BAO data set. The mean of the marginal posterior PDF for the givenparameters (presented in Fig. 5), together with the 68% 
redible interval are presentedin Table 1 and Table 2 for SNLS+CMB+BAO and Union+CMB+BAO respe
tively.
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redible interval for the SNIa+CMB and SNIa+CMB+BAO data sets.Union+CMB Union+CMB+BAO

Ωm 0.40
+0.04
−0.05 0.43

+0.03
−0.04

n 1.02
+0.79
−0.77 1.60

+0.80
−0.76

h 0.74
+0.03
−0.03 0.72

+0.02
−0.02

Ωbh
2 0.0219

+0.0003
−0.0003 0.0219

+0.0003
−0.00033.2. Models 
omparison3.2.1. ΛCDM vs the ba
krea
tion modelIn this se
tion we present the 
omparison between the model 
onsidered above (whi
hwill be referred to as model 1) and the standard 
osmologi
al model - ΛCDM model(whi
h will be referred to as model 0). In the Bayesian framework, models are 
omparednot only by their goodness of �t to the data but also by their 
omplexity (see [25℄ fora review). The best model from the set of models under 
onsideration is the one withthe greatest value of the probability in the light of data de�ned as

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
, (20)where Mi is a model under 
onsideration, P (Mi) is the prior probability of a model. If wehave no foundation to favour one model over another one from the set of models under
onsideration we usually assume the same value of the prior quantity for all models, i.e.

P (Mi) = 1/K, where K is the number of models. P (D) is the normalization 
onstant.
P (D|Mi) is 
alled the marginal likelihood (or the eviden
e) and has the following form

P (D|Mi) =
∫

L(θ̄)P (θ̄|Mi)dθ̄ ≡ Ei. (21)It is 
onvenient to 
onsider the ratio of posterior probabilities for the models whi
h we
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krea
tion models 10Table 3. Values of logarithm of the Bayes Fa
tor lnBij 
al
ulated for the modelindexed by i and model indexed by j for di�erent data sets.Data set lnB01 lnB21 lnB02 lnB03 lnB31 lnB04 lnB41SNLS 0.89 −0.22 1.11 1.15 −0.25 1.06 −0.17Union 0.48 −0.13 0.61 0.74 −0.26 −0.69 −0.21SNLS+CMB 5.52 3.78 1.74 1.73 3.79 1.87 3.65Union+CMB 4.94 3.28 1.66 1.59 3.34 1.73 3.21SNLS+CMB+BAO 4.77 3.13 1.64 1.83 2.93 1.78 2.99Union+CMB+BAO 4.23 2.58 1.65 1.66 2.57 1.80 2.43want to 
ompare. If prior probabilities for those models are equal then the posteriorratio redu
es to the ratio of the eviden
es. This ratio is 
alled the Bayes Fa
tor(Bij ≡ Ei/Ej). The values of Bij are interpreted as follows: 0 < ln Bij < 1 asin
on
lusive, 1 < ln Bij < 2.5 as weak, 2.5 < ln Bij < 5 as moderate and ln Bij > 5 asstrong eviden
e in favour of a model indexed by i with respe
t to a model indexed by
j. The eviden
e [eq. (21)℄ was 
al
ulated using the CosmoNest 
ode. In addition weassumed equal values of the prior probabilities for all 
onsidered models and the priorPDF for the model parameters. The values of logarithm of the Bayes Fa
tor 
al
ulatedfor the ΛCDM model (model 0) vs model 1 (i.e. the model presented in Se
. 3.1) � B21� are presented in Table 3.As one 
an 
on
lude the 
omparison in the light of the supernovae data does notgive 
on
lusive results, this data set has not enough information to favour one modelover another one. After in
lusion an information 
oming from the CMB there is strong(SNLS+CMB) and almost strong (Union+CMB) eviden
e in favour of the ΛCDM modelover the inhomogeneous one. When we in
lude information 
oming from the BAO thevalues of the Bayes Fa
tor be
ome smaller in both 
ases and the eviden
e to favour the
ΛCDM model is moderate.3.2.2. Relation between the average 
urvature and the 
urvature indexIn the pre
eding subse
tion we 
ould see that the Bayesian method of model 
omparisonprefers the ΛCDM model over the ba
krea
tion model. We should be aware that theba
krea
tion model � model 1 � is based on the assumptions (9) and (10). If theseassumptions are 
hanged it is possible to obtain a better �t. Below we present modelswhere the assumption (10) is repla
ed with:
• model 2

k(z) = 0. (22)We emphasize that k = 0 
omes from modi�
ation of the assumption (10) only. Itis not the same as assuming that 〈R〉 = 0. As seen from (5) the assumption of
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〈R〉 = 0 leads to Q ∼ a−6, whi
h means that the ba
krea
tion is strong in the earlyUniverse and its value de
reases with time.The results of the model 
omparison are presented in Table 3. As 
an be seen, bothfor the SNIa+CMB and SNIa+CMB+BAO data sets, there is moderate eviden
eto favour the ba
krea
tion model with k = 0 over the model with relation (10) Notethat there is only weak eviden
e to favour the ΛCDM model over model 2.

• model 3
k(z) = −1

p
(1 + z)−(n+2). (23)We assume a �at prior PDF for the additional parameter in the range p ∈ [0, 100].As we 
ould see, model 2 �t observations better than model 1. If indeed k = 0is favoured then we should obtain that the best model with k given by (23) is theone with p = 100. However, this is not the 
ase, and as seen from the left panelof Fig. 6 the marginal posterior PDF is almost �at in a very wide range � there isonly a little di�eren
e between p = 100 and the best-�t value. The posterior PDFmode for model 3 is: Ωm = 0.20, n = −0.37, h = 0.78, Ωbh

2 = 0.0222, p = 75.80(SNLS+CMB), Ωm = 0.20, n = −0.53, h = 0.77, Ωbh
2 = 0.0221, p = 50.23(Union+CMB), Ωm = 0.27, n = −0.20, h = 0.74, Ωbh
2 = 0.0221, p = 63.71(SNLS+CMB+BAO), Ωm = 0.31, n = 0.16, h = 0.73, Ωbh

2 = 0.0223, p = 48.61(Union+CMB+BAO). The means of the marginal posterior PDF for the modelparameters are presented in Table 4. The values of logarithm of the Bayes Fa
tor
al
ulated for the ΛCDM model and model 3 (ln B03) as well as for model 3 andmodel 1 (ln B31) are 
ompared in Table 3. As one 
an 
on
lude there is weakeviden
e to favour the ΛCDM model over model 3 and moderate eviden
e in favourof model 3 over model 1 (for SNIa+CMB and SNIa+CMB+BAO data sets).
• model 4

k(z) = −(1 + z)−(n+2+m). (24)We assume a �at prior PDF for the additional parameter in the range m ∈ [0, 5].The posterior PDF mode for model 4 is: Ωm = 0.20, n = −0.58, h = 0.77, Ωbh
2 =

0.0220, p = 3.05 (SNLS+CMB), Ωm = 0.23, n = −0.56, h = 0.75, Ωbh
2 =

0.0222, m = 3.79 (Union+CMB), Ωm = 0.25, n = −0.37, h = 0.75, Ωbh
2 =

0.0221, m = 3.18 (SNLS+CMB+BAO), Ωm = 0.26, n = −0.38, h = 0.74, Ωbh
2 =

0.0220, m = 3.61 (Union+CMB+BAO). The marginal posterior PDF for theparameter m is presented in the right panel of Fig. 6. The means of the marginalposterior PDF for the model parameters are presented in Table 5. The values oflogarithm of the Bayes Fa
tor 
al
ulated for the ΛCDM model and model 4 (lnB04)as well as for model 4 and model 1 (ln B41) are 
ompared in Table 3.These above results are en
ouraging and motivate further study of the ba
krea
tionmodels. Espe
ially, it is important to study other assumptions than (9) and (10). Asseen, if only assumption (10) was modi�ed (models 2-4) then not only we obtained abetter �t but also the value of Ωm realisti
ally de
reased 
ompared to model 1.
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mFigure 6. Marginal posterior PDF for the parameter p of model 3 (left panel) andfor the parameter m of model 4 (right panel). The upper �gures are based on theSNLS+CMB (�rst and third) and SNLS+CMB+BAO data (se
ond and fourth). Thelower �gures are based on the Union+CMB (�rst and third) and Union+CMB+BAOdata (se
ond and fourth).

Table 4. Mean of the marginal posterior PDF for the parameters of model 4 togetherwith the 68% 
redible interval for the SNIa+CMB and SNIa+CMB+BAO data sets.SNLS+CMB SNLS+CMB+BAO Union+CMB Union+CMB+BAO
Ωm 0.24

+0.04
−0.03 0.28

+0.06
−0.05 0.26

+0.05
−0.05 0.31

+0.06
−0.07

n −0.18
+0.28
−0.33 0.10

+0.54
−0.55 −0.13

+0.37
−0.41 0.27

+0.70
−0.67

h 0.76
+0.02
−0.02 0.74

+0.02
−0.02 0.75

+0.02
−0.02 0.73

+0.02
−0.02

Ωbh
2 0.0216

+0.0005
−0.0005 0.0216

+0.0005
−0.0006 0.0216

+0.0005
−0.0006 0.0217

+0.0005
−0.0006

p 53.18
+30.63
−31.26 54.25

+30.09
−31.01 53.99

+30.97
−31.19 53.87

+30.26
−30.43

Table 5. Mean of the marginal posterior PDF for the parameters of model 5 togetherwith the 68% 
redible interval for the SNIa+CMB and SNIa+CMB+BAO data sets.SNLS+CMB SNLS+CMB+BAO Union+CMB Union+CMB+BAO
Ωm 0.24

+0.04
−0.03 0.28

+0.06
−0.06 0.26

+0.05
−0.05 0.30

+0.07
−0.06

n −0.32
+0.29
−0.34 −0.06

+0.52
−0.54 −0.26

+0.40
−0.40 0.07

+0.69
−0.65

h 0.76
+0.02
−0.03 0.74

+0.02
−0.02 0.74

+0.02
−0.02 0.73

+0.02
−0.02

Ωbh
2 0.0216

+0.0005
−0.0006 0.0216

+0.0005
−0.0006 0.0216

+0.0005
−0.0006 0.0216

+0.0005
−0.0006

m 3.00
+1.34
−1.31 3.20

+1.23
−1.22 3.13

+1.29
−1.28 3.22

+1.22
−1.24
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krea
tion models 134. Con
lusionsIn this paper we presented the Bayesian analysis of the ba
krea
tion models. This workwas motivated by the re
ently proposed model of the inhomogeneous alternative to darkenergy [10℄. In this approa
h the Universe is modelled by the Bu
hert equations, whi
hdes
ribe the relations between the s
ale fa
tor, the average spatial 
urvature, averagematter distribution, average expansion and shear. Larena et al. [10℄ showed that theirmodel is 
onsistent with supernova and CMB data. Here we in
luded the BAO dataand tested this model within the Bayesian approa
h.Our analysis shows that the SNLS and CMB data alone strongly favours the ΛCDMmodel. With Union sample and BAO data there is almost strong eviden
e (lnB21 > 4)to favour the ΛCDM over the ba
krea
tion model. However, if just the best-�t modelsare 
ompered, then the χ2 (Union+CMB+BAO) for the ΛCDM and model 1 are 320.96and 325.36 respe
tively. If the χ2 distribution is assumed then for 307 numbers ofdegree of freedom for model 1 the probability that this model is true in the light ofdata is 22.6%. For 
omparison for the ΛCDM (308 degree of freedom) we get 29.3%.So we 
an see that the best-�t model 1 �ts observations almost as good as the ΛCDMmodel. Still there are some other 
on
erns regarding this model. For example, 
an theassumptions (9) and (10) be justi�ed? In other words, how does the ba
krea
tion andthe spatial 
urvature of the real Universe evolve, and does the relation Q ∼ 〈R〉 for thereal Universe hold? Even still, the most 
on
erning is the value of Ωm, whi
h is quitelarge, 0.43+0.03
−0.04. However, as it was shown in Se
. 3.2.2, after the assumption (10) wasmodi�ed, we were able to obtain a better �t and, in addition, the value of Ωm de
reasedto 0.31+0.06

−0.07 and 0.30+0.07
−0.06 (or even lower if the BAO data is ex
luded � see Tables 4 and5) for model 4 and 5 respe
tively. This shows, that still a lot needs to be done in the
ontext of the ba
krea
tion models, espe
ially in the study of the relation between theaverage spatial 
urvature and the ba
krea
tion. Currently the ΛCDM model is preferredby the observational data but it is possible that after the revision of assumptions (9)and (10) we 
an obtain a more satisfa
tory �t. We should also remember that amongdi�erent models of dark energy, here, the dark-energy-term appears as a 
onsequen
e ofinhomogeneities that are present in the Universe. Therefore, within this 
lass of modelsthe �de
aying lambda term� reveals a new and natural interpretation.A
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