Course Syllabus

I. General Information

Course name	Foundations of probabilistic methods
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BSc
MA)	
Form of studies (full-time, part-time)	Full-time
Discipline	Informatics
Language of instruction	Polish

Course coordinator/person responsible	Dr Kamil Powroźnik

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	30	III	5
tutorial			
classes	30	III	
laboratory classes			
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Mathematical analysis (numerical sequences and series, differential and	
	integral calculus of functions of one and several variables)	

II. Course Objectives

- C1 Studying mathematical methods used for the description of random phenomena
- C2 Learning methods for calculating probabilities of random events, determining distributions of random variables and finding numerical parameters of probability distributions
- C3 Learning about different modes of convergence of random variables
- C4 Calculating the characteristic functions (Fourier transforms)
- C5 Learning the basic limit theorems of probability theory

III. Course learning outcomes with reference to programme learning outcomes

Symbol		Reference to	
	Description of course learning outcome	programme learning	
		outcome	
	KNOWLEDGE		
W_01	Students give various definitions of probability and build	K_W02	
	mathematical models describing random phenomena and		
	random experiments		
W_02	Students list the most important discrete and continuous	K_W02	
	probability distributions		
W_03	Students quote the basic theorems of probability theory	K_W02	
SKILLS			
U_01	Students use in practice various probability definitions, the law	K_U22	
	of total probability and the Bayes formula, examine the		
	independence of random variables, calculate parameters of		
	distributions for discrete and continuous random variables,		
	calculate covariances and correlation coefficients, find		
	equations of regression lines		
U_02	Students recognize probability distributions based on	K_U22	
	characteristic functions		
U_03 Students apply probabilistic methods for solving problems K_U22		K_U22	
	from various fields		
	SOCIAL COMPETENCIES		
K_01	Students formulate opinions on selected practical issues using	K_K01	
	tools of probability theory		

IV. Course Content

- 1. Elements of combinatorics.
- 2. Random experiment, sample space, elementary events, random events.
- 3. Classical and geometrical definitions of probability. Examples of applications.
- 4. Axioms of probability. Properties of probability. Construction of a probability measure.
- 5. Independence of a random events. Conditional and total probability. Bayes formula. Bernoulli scheme.
- 6. Random variable and its distribution. Discrete and continuous variables. Probability and density functions. Cumulative distribution function of a random variable.
- 7. Basic distributions of discrete and continuous type. Standard normal distribution and its applications.
- 8. Main characteristics od random variables and theirs properties (expectation, variance, moments and central moments).
- 9. Characteristic function and its properties. The inversion formula. Levy-Cramer's theorem. A relation between a characteristic function and moments.
- 10. Multivariate random variables. Marginal and conditiona distributions. Independence of a random variables.
- 11. Covariance and correlation coefficient, properties of a correlation coefficient. Lines of regression..
- 12. Various kinds of convergence of random variables. Relationships between various modes of convergence.

13. Limit theorems (such as Laws of large numbers, Poisson limit theorem, Central Limit Theorem).

V. Didactic methods used and forms of assessment of learning outcomes

_ ·		_	
Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	Conventional lecture, gu-	Written exam, written test	Evaluated exam,
	ided practice		evaluated test
W_02	Conventional lecture,	Written exam, written test	Evaluated exam,
	guided practice		evaluated test
W_03	Conventional lecture,	Written exam, written test	Evaluated exam,
	guided practice		evaluated test
SKILLS			
U_01	Practical classes, guided	Written exam, written test	Evaluated exam,
	practice		evaluated test
U_02	Practical classes, guided	Written exam, written test	Evaluated exam,
	practice		evaluated test
U_03	Practical classes, guided	Written exam, written test	Evaluated exam,
	practice		evaluated test
SOCIAL COMPETENCIES			
K_01	Discussion, practical	Written exam, written test	Evaluated exam,
	classes		evaluated test

VI. Grading criteria, weighting factors.....

Lecture:

Written exam divided on two parts:

- practical verifying the ability to apply in practice the knowledge gained during lectures and classes,
- theoretical checking the theoretical knowledge acquired during the lecture.

Evaluation criteria:

[0-50%) points - unsatisfactory (2)

[50% -60%] - satisfactory (3)

[60% -70%) - satisfactory plus (3.5)

[70% -80%) - good (4)

[80% -90%) - good plus (4.5)

[90% -100%] - very good (5)

Classes:

Two written tests. To get a credit student should obtain form both tests minimum 50% of points.

Evaluation criteria:

[0-50%) points - unsatisfactory (2)

[50% -60%] - satisfactory (3)

[60% -70%) - satisfactory plus (3.5)

[70% -80%) - good (4)

[80% -90%) - good plus (4.5) [90% -100%] - very good (5)

The detailed description of assessment is given during the first lecture/classes.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	90
Number of hours of individual student work	60

VIII. Literature

Basic literature

- 1. A. Borowkow, "Rachunek prawdopodobieństwa", PWN 1977.
- 2. J. Jakubowski, R. Sztencel, "Wstęp do teorii prawdopodobieństwa", Script 2002.
- 3. P. Billingsley, "Prawdopodobieństwo i miara", PWN 1967.
- 4. W. Feller, "Wstęp do rachunku prawdopodobieństwa", t. I–II, PWN 1969.
- 5. M. Fisz, "Rachunek prawdopodobieństwa i statystyka matematyczna", PWN 1967.
- 6. Notatki z wykładu.

Additional literature

- 1. W. Krysicki i in., "Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach", t. I-II, PWN 1997.
- 2. T. Gerstenkorn, T. Śródka, "Kombinatoryka i rachunek prawdopodobieństwa", PWN 1978.

annex 5 to programme documentation