Course Syllabus

Course from study programme for the cycle: 2022/2023

I. General Information

Algorithms and data structures
Informatics
BA (1 st level)
full-time
Informatics
English

Course coordinator	Michał Horodelski

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	30	IV	5
tutorial			
classes			
laboratory classes	30	IV	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	1. Programming skills
	2. Object-oriented programming,
	3. Basics of programming in C++

II. Course Objectives

1 Presentation of the basic abstract data types and operations on them		
2 Own implementation of abstract data types		
3. Improving skills in programming and analytical thinking		
4. Abstract data types in C++ standard library		

		-
Symbol		Reference to
	Description of course learning outcome	programme learning
		outcome
	KNOWLEDGE	
W_01	The student can recognize the basic data structures and	K_W01, K_W03,
	indicate the differences between the learned data structures.	K_W06
W_02	The student knows basic methods that manipulates abstract	K_W03
	data structures and their implementation.	
	SKILLS	
U_01	The student can use technical language related to the ADS	K_U06, K_U10
	concepts and can choose the appropriate abstract data	
	structures and to a specific problem.	
U_02	The student can use abstract data structures in application,	K_U08, K_U10,
	implement own version of ADS and use frameworks or	K_U11
	libraries with prepared implementation.	
U_03	The student can solve problems from various areas of sciences	K_U10, K_U11,
	and real life using algorithms based on abstract data	K_U12
	structures	
U_04	The student can work individually and in a team, understands	K_U17
	the need for systematic work on long-term projects. The	
	student Can properly define the priorities within the	
	implemented IT project.	
	SOCIAL COMPETENCIES	
K_01	The student is ready to assess the level of his knowledge and	K_K01
	skills and critically evaluates the received content.	
K_02	The student shows initiative and efficiency during the project.	К_КО2

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

Pointers.
Files and I/O operations
Function and class templates.
Stack and reverse Polish notation.
Queue and examples of its use.
Forward lists and lists with sorting options.
Trees, binary search trees (BST).
Tree operations. Balancing trees. The use of trees.
Heap - priority queues.
Sorting and search algorithms.
Hash table.
Pointers to functions.

Symbol	Didactic methods (choose from the list)	Forms of assessment (choose from the list)	Documentation type (choose from the list)
		KNOWLEDGE	
W_01	 Conventional lecture Conversational lecture Guided practice implementations in laboratory and in homework, using a projector group work 	 Exam/Written test Preparation / implementation of the project homework programs 	- written work, - set of files, - report
W_02	 Conventional lecture Conversational lecture Guided practice implementations in laboratory and in homework, using a projector group work 	 Exam/Written test Preparation / implementation of the project homework programs 	- written work, - set of files, - report
		SKILLS	
U_01	 Practical classes Project-based Learning implementations in laboratory and in homework, using a projector design thinking group work 	 Exam/Written test Preparation / implementation of the project homework programs activity during the laboratory 	- written work, - set of files, - report
U_02	 Practical classes Project-based Learning implementations in laboratory and in homework, using a projector design thinking group work 	 Exam/Written test Preparation / implementation of the project homework programs activity during the laboratory 	- written work, - set of files, - report
U_03	 Practical classes Project-based Learning implementations in laboratory and in homework, using a projector design thinking group work 	 Exam/Written test Preparation / implementation of the project homework programs activity during the laboratory 	- written work, - set of files, - report
U 04	- Practical classes	- Exam/Written test	- set of files,

V. Didactic methods used and forms of assessment of learning outcomes

	- Group work - Project-based Learning - implementations in laboratory and in homework, - using a projector - design thinking - group work	 Preparation / implementation of the project homework programs activity during the laboratory 	- report
	S	OCIAL COMPETENCIES	
K_01	 Discussion Conventional lecture Conversational lecture group work Project-based design thinking Learning 	 Exam/Written test Preparation / implementation of the project homework programs activity during the laboratory 	- written work, - set of files, - report
К_02	 Discussion Conventional lecture Conversational lecture group work Project-based design thinking Learning 	 Exam/Written test Preparation / implementation of the project homework programs activity during the laboratory 	- set of files, - report

VI. Grading criteria, weighting factors.....

Passing laboratory: verification by written tests (20% of the final mark), activity in laboratories (10% of the final mark), homework covering particular topics of data structures (20% of the final mark) and a test (50% of the final mark).

Passing the lecture: written and oral exam (for people who have passed the laboratory), knowledge provided during the lecture.

Grading scale: less than 50% insufficient (2.0)

Detailed rules of assessment are given to students with each edition of the subject.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Lecture 30
	Laboratory 30
	Consultations 30
Number of hours of individual student work	Preparation for classes and home projects 30
	Studying Literature 10
	Preparation for tests and exam 20

VIII. Literature

Basic literature

1. M. A. Weiss, Data Structures Algorithm Analysis in C++, 4th edition, Pearson, 2014

2. Clifford A. Shaffer, Data Structures and Algorithm Analysis Edition 3.2 (C++ Version), published by Dover Publications, 2013

3. C++ Language Tutorials on the website cplusplus.com, site:

http://www.cplusplus.com/doc/tutorial/, 2021

Additional literature

1. Cormen T.H., Leiserson C.E., Rivest R.L., Introduction to Algorithms, Wyd. Massachusetts Institute of Technology, 2009

2. Knuth D E. The art of computer programming. Volume 1, Volume 2, Volume 3

3. C++ language Tutorials on the website cppreference.com, site:

https://en.cppreference.com/w/cpp/language, 2021