Course Syllabus

Course from study programme for the cycle: 2022/2023

I. General Information

Course name	Computer modeling and simulations
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	English

Course coordinator	dr hab. Aliaksandr Chychuryn prof. KUL

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	30	III	5
tutorial			
classes	30	III	
laboratory classes			
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	1. Knowledge of basis for computing;
	2. Programming skills;
	3. The ability to search for information on the Internet;
	4. Knowledge of basis for mathematical analysis and algebra in the first year
	in education of computer science

II. Course Objectives

annex 5 to programme documentation

		Reference to
Symbol	Description of course learning outcome	programme learning
		outcome
	KNOWLEDGE	
W_01	define the concepts of modeling and simulation	K_W01
W_02	analyze approaches to solving of differential and algebraic	K_W01
	equations in the Mathematica / Matlab program	
W_03	formulate the differences between various methods of	K_W01, K_W11
	visualization and animation programs available	
W_04	select online sources of knowledge, which can be traced to	K_W01, K_W06
	ready-made examples of models in various fields prepared in	
	Mathematica code (WebMathematica 3.3)	
W_05	know basic applications of programs MatLab, Scilab and	K_W05
	WolframAlpha	
	SKILLS	
U_01	can use different data collections available in Mathematica and	K_U06, K_U11
	Matlab programs	
U_02	can create visualizations of known models	K_U06, K_U11
U_03	is able to create simulations of known models	K_U06
U_04	can use MatLab, Scilab and WolframAlpha programs	K_U03
U_05	can solve simple models using the MatLab, Scilab and	K_U17
	Mathematica programs, containing differential equations with	
	initial conditions	
	SOCIAL COMPETENCIES	
K_01	formulate opinions about selected models	K_K01

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

1. Introduction to the modeling and simulation.

Concept of modeling. Kinds of computer simulations. Examples of the models.

Mathematical models and numerical methods. Differential equations and mathematical models. Modeling with the Mathematica/MatLab system.

2. First Steps with Mathematica/MatLab. Numbers. Types of Numbers. Exact and Approximate Results. Numerical Precision. Arbitrary-Precision Numbers.

Algebraic Calculations. Symbolic Computation. Transforming Algebraic Expressions. Linear Algebra. Solving Linear Systems.

Numerical Methods in Mathematica/MatLab. The Uncertainties of Numerical Mathematics. Numerical Equation Solving. Numerical Solution of Polynomial Equations. Numerical Root Finding. Numerical Solution of Differential Equations.

Symbolic calculations. Series and Limits. Differentiation. Integration. Indefinite Integrals. Definite Integrals. Differential Equations.

3. Visualization and graphics in Mathematica/MatLab.

Graphics for Functions (2D, 3D). Basic Graphics Primitives. Basic Graphics Options.

Graphics for 2D Data. The numerical Data. Basic Image transformation. View and Animation. Basic Manipulation.

4. Programming in Mathematica/MatLab. Wolfram Language.

Simple Programming. Modeling and simulation with Mathematica/MatLab (simple examples).

5. Web- Mathematica. WolframAlpha. Demonstration Projects in the Mathematica codes.

Symbol	Didactic methods (choose from the list)	Forms of assessment (choose from the list)	Documentation type (choose from the list)
	(encose), enclare not)	KNOWLEDGE	
W_01	conventional lecture, problem lecture, seminar lecture, multimedia presentation, e-learning	Test / Exam	Written test / Completed and graded test
W_02	conventional lecture, problem lecture, seminar lecture, multimedia presentation, e-learning	Test / Exam	Written test / Completed and graded test
W_03	conventional lecture, problem lecture, seminar lecture, multimedia presentation, e-learning	Test / Exam	Written test / Completed and graded test
W_04	conventional lecture, problem lecture, seminar lecture, multimedia presentation, e-learning	Test / Exam	Written test / Completed and graded test
W_05	conventional lecture, problem lecture, seminar lecture, multimedia presentation, e-learning	Test / Exam	Written test / Completed and graded test
	0	SKILLS	
U_01	Practical exercises, discussion design thinking	Test / Presentation	Protocol / Test / Assessing written text
U_02	Practical exercises, discussion design thinking	Test / Presentation	Protocol / Test / Assessing written text
U_03	Practical exercises, discussion design thinking	Test / Presentation	Protocol / Test / Assessing written text
U_04	Practical exercises, discussion design thinking	Test / Presentation	Protocol / Test / Assessing written text
U_05	Practical exercises, discussion design thinking	Test / Presentation	Protocol / Test / Assessing written text
		CIAL COMPETENCIES	
K_01	Discussion design thinking	Test / Presentation	Written test / Completed and graded test

V. Didactic methods used and forms of assessment of learning outcomes

VI. Grading criteria, weighting factors...

Assessment of classes: 1 test (80%), 1 demonstration project (20%)

Oral exam

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	90
Number of hours of individual student work	70

VIII. Literatura

Basic literature
1. Edwards C. Henry, Penney David E., Calvis David T. Differential Equations and Boundary Value
Problems: Computing and Modeling Pearson Prentice Hall. 2016 800 p.
2. Giordano Frank R., Fox William P., Horton Steven B. A First Course in Mathematical Modeling
Brooks/Cole, Boston. 2014 676 p.
3. Wagon S. Mathematica in Action: Problem Solving Through Visualization and Computation, Third
Edition New York: Springer-Verlag, 2010 680 p.
4. Pratap Rudra, MatLab 7 for scientists and engineers. Warszawa: PWN, 2010.
Additional literature
1. Stormy Attaway, Matlab: A Practical Introduction to Programming and Problem Solving,
Butterworth-Heinemann. 2018. – 626 p.
2. Ruskeepää, Heikki. Mathematica Navigator: Mathematics, Statistics, and Graphics Burlington,
San Diego, London: Elsevier, - 3rd ed. 2009 1112 p.
OTHER LEARNING RESOURCES
www.wolframalpha.com
www.demonstrations.wolfram.com
www.wolfram.com/learningcenter/tutorialcollection
https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
www.virtualregion.kul.pl