Course Syllabus

Course from study programme for the cycle: 2022/2023

I. General Information

Course name	Methods and algorithms for computer graphics
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	english

Course coordinator dr Ar	men Grigoryan

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	30	IV	5
tutorial			
classes			
laboratory classes	30	IV	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Fundamentals of algorithms and programming
	Computer graphics
	Mathematical basics for computer graphics

II. Course Objectives

Presentation of the basic algorithms used in applied in computer graphics. Presentation of advanced techniques used in three-dimensional computer graphics.

Symbol		Reference to
Symbol	Description of course learning outcome	programme learning
		outcome
	KNOWLEDGE	
W_01	The student knows basic algorithms of computer graphics.	K_W11
W_02	The student knows advanced techniques of three-dimensional	K_W11
	computer graphics	
SKILLS		
U_01	Ability to analyse basic computer graphics algorithms.	K_U02, K_U04,
		K_U25
U_02	Application of three-dimensional computer graphics basic	K_U02, K_U04,
	methods.	K_U25
SOCIAL COMPETENCIES		
K_01	The student is aware of his knowledge and skills and	K_K01
	understands the need for lifelong learning.	

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

Raster algorithms. De Casteljau algorithm. Introduction to OpenGL: compatibility and core profiles. Rendering methods. Modifiers and their applications. Particle systems. Texturing (also procedural texturing). Applications of physical models in computer graphics.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	Conventional lecture	Test	Protocol
W_02	Conventional lecture	Test	Protocol
SKILLS			
U_01	Laboratory classes	Test	Protocol
	design thinking		
U_02	Laboratory classes	Test	Protocol
	design thinking		
SOCIAL COMPETENCIES			
K_01	Laboratory classes	Test	Protocol
	design thinking		

VI. Grading criteria, weighting factors.....

Classes: graded pass based on a test result: 91 – 100% - 5, 81 – 90% - 4.5,

71 - 80% - 4.0, 61 - 70% - 3.5, 50 - 60% - 3.0, 0 - 49% -2.0

Lecture: graded pass based on a test result (only for those who have completed the classes):

91 - 100% - 5, 81 - 90% - 4.5, 71 - 80% - 4.0, 61 - 70% - 3.5, 50 - 60% - 3.0, 0 - 49% -2.0

Detailed assessment rules are given to students with each subject edition.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Lecture 30
	Laboratory 30
	Consultations 30
Number of hours of individual student work	60

VIII. Literature

Basic literature

1. Foley, J., Van Dam, A., et al, "Computer graphics : principles and practice", Addison-Wesley; 2014.

2. OpenGL Architecture Rewiew Board: M. Woo, J. Neider, T. Davis, "OpenGL Programming Guide", Second Edition, Addison-Wesley Developer Press, Sydney, Bonn, Amsterdam, Tokyo, 1997.

3. Simonds, B., "Blender master class; a hands-on guide to modeling, sculpting, materials, and rendering", Portland: Ringgold, Inc, 2013.

4. opengl.org

5. blender.org

Additional literature

1. Flavell, L., "Beginning Blender Open Source 3D Modeling, Animation, and Game Design", Berkeley, CA : Apress : Imprint: Apres, 2012.

2. Agoston, M. K., "Computer Graphics and Geometric Modelling Implementation & Algorithms", London : Springer London : Imprint: Springer; 2005.