Course Syllabus

Course from study programme for the cycle: 2023/2024

I. General Information

Course name	Introduction to differential and integral calculus
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	ВА
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Mathematics
Language of instruction	English

Course coordinator	dr Andrzej Michalski
--------------------	----------------------

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	30	1	5
tutorial			
classes			
laboratory classes	30	1	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Ability to perform calculations on real numbers.
	Knowledge of basic formulas and functions.
	Ability to search for information in the literature.

II. Course Objectives

To present mathematical and supporting IT tools necessary for further study.
To present the basic concepts and theorems of calculus.
To develop skills in applied calculus.
Gaining skills of the IT tools usage to solve problems of calculus.

		Reference to
Symbol	Description of course learning outcome	
	Description of course learning outcome	programme learning
		outcome
	KNOWLEDGE: Student knows and understands	
W_01	Basic notions and properties related to set theory (K_W02).	K_W02
W_02	Basic concepts and definitions of calculus (K_W02).	K_W02
W_03	Basic methods and theorems of calculus (K_W02).	K_W02
W_04	Selected applications of calculus (K_W05).	K_W05
	SKILLS: Student has ability to	
U_01	Solve typical problem using standard methods and supporting	K_U03, K_U21
	IT tools (K_U03, K_U21).	
U_02	Analyze complex problem, propose and explain the optimal	K_U21, K_U22
	methods for its solution (K_U21, K_U22).	
U_03	Solve selected practical problems, in particular by using IT	K_U21, K_U22
	tools (K_U21, K_U22).	
	SOCIAL COMPETENCIES: Student is able to	
K_01	Formulate opinions on the applicability of calculus methods	K_K01
	taking into account their knowledge and skills (K_K01).	

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

Basics of set theory. Relations. Functions. Sequences and series. Convergence. Limit and continuity of a function of one real variable. Derivative and its interpretation. Higher order derivatives. Applications of the derivatives.

Antiderivative and indefinite integral. Definite integral and its interpretation. Fundamental theorem of calculus (Newton – Leibniz theorem). Applications of the integrals. Selected topics in ordinary differential equations.

Limit and continuity of a function of several real variables. Partial derivatives. Differentiability. Applications of differential calculus of several variables.

Basics of vector calculus.

Multiple integrals.

IT tools for solving problems of calculus available in computer labs.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	conventional lecture,	test, written exam, oral	evaluated test, protocol
	discussion, practical	exam	
	classes		
W_02	conventional lecture,	test, written exam, oral	evaluated test, protocol
	discussion, practical	exam	
	classes		
W_03	conventional lecture,	test, written exam, oral	evaluated test, protocol
	discussion, practical	exam	
	classes		
W_04	conventional lecture,	test, written exam, oral	evaluated test, protocol
—	discussion, practical	exam	
	classes		

		SKILLS	
U_01	discussion, practical classes, laboratory classes, design thinking, project- based learning	test, written exam, oral exam, preparation of the project	evaluated test, protocol, files
U_02	discussion, practical classes, laboratory classes, design thinking, project- based learning	test, written exam, oral exam, preparation of the project	evaluated test, protocol, files
U_03	discussion, practical classes, laboratory classes, design thinking, project- based learning	test, written exam, oral exam, preparation of the project	evaluated test, protocol, files
	SC	DCIAL COMPETENCIES	
К_01	discussion, practical classes, laboratory classes, design thinking, project- based learning	test, written exam, oral exam, preparation of the project	evaluated test, protocol, files

VI. Grading criteria, weighting factors.....

LECTURE:

The completion of laboratory classes is required. Written and oral exam together constitute the final grade:

- 91 100% excellent
- 81 90% very good
- 71 80% good
- 61 70% satisfactory
- 51 60% sufficient
- less than 51% fail
- LABORATORY CLASSES:

At least 80% of attendance is required. Two tests and projects implemented in the computer lab together constitute the final grade:

- 91 100% excellent
- 81 90% very good
- 71 80% good
- 61 70% satisfactory
- 51 60% sufficient
- less than 51% fail

Detailed assessment rules are given during lectures and laboratory classes.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Lecture: 30 hrs.
	Laboratory classes: 30 hrs.
	Individual consultations: 30 hrs.
	In total: 90 hrs.
Number of hours of individual student work	Preparation for classes: 30 hrs.
	Studying books: 30 hrs.
	Preparation for tests and exams: 30 hrs.

In total: 90 hrs.

VIII. Literature

Basic literature
Lecture notes.
Worksheets.
Additional literature
In English:
J. Stewart, Single Variable Calculus, Cengage Learning, 2007.
R. Ellis, D. Gulick, Calculus: One and Several Variables, Harcourt Brace Jovanovich, 1991.
D. D. Berkey, P. Blanchard, Calculus, Saunders College Pub., 1992.
S. L. Salas, E. Hille, J. T. Anderson, Calculus: One and Several Variables with Analytic Geometry,
Wiley, 1986.
In Polish:
M. Gewert, Z. Skoczylas, Analiza Matematyczna 1, Oficyna Wydawnicza GiS, 2005.
M. Gewert, Z. Skoczylas, Analiza Matematyczna 2, Oficyna Wydawnicza GiS, 2005.
W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, PWN, 2004.
M. Gewert, Z. Skoczylas, Równania różniczkowe zwyczajne, Oficyna Wydawnicza GiS, 2006.
T. Krasiński, Analiza matematyczna. Funkcje jednej zmiennej, Wyd. UŁ, Łódź 2003.
F. Leja, Rachunek różniczkowy i całkowy ze wstępem do równań różniczkowych, PWN, Warszawa
1977.
G. Fichtenholz, Rachunek różniczkowy i całkowy, PWN, 2005.