Course Syllabus

Course from study programme for the cycle: 2023/2024

I. General Information

Course name	Linear algebra
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	full-time,
Discipline	Informatics
Language of instruction	english

Course coordinator Dr Grzegorz Dymek

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	15	1	5
tutorial			
classes			
laboratory classes	30	1	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	1. Ability to do arithmetical calculations on real numbers.
	2. Knowledge of basic formulas and functions.

II. Course Objectives

1. Gaining knowledge of fundamental notions of linear algebra and mathematical methods used in
it.
2. Gaining skills of formulate various problems in the language of linear algebra.
3. Preparing to further study of computer science.
4. Gaining skills of the IT tools usage to solve problems of linear algebra.

III. Course learning outcomes with reference to programme learning outcomes

Symbol Description of course learning outcome		Reference to programme learning	
		outcome	
	KNOWLEDGE		
W_01 Student knows fundamental notions and theorems of linear al-		K_W02	
	gebra (for example, determinant, rank of a matrix, Cramer's		

	formulas)	
W_02	Student knows typical problems which can be described and	K_W02
	solved by methods of linear algebra	
W_03	Student knows basic examples illustrating listed notions K_W02	
	SKILLS	
U_01	Student presents correct mathematical reasoning, formulate	K_U21
theorems and definitions		
U_02	U_02 Student has ability to find own methods of solving various K_U03, K_U21	
	problems (fundamentals of matrix calculus, determinants, sys-	
	tems of linear equations), in particular by using IT tools	
	SOCIAL COMPETENCIES	
K_01	_01 Student is able to evaluate his/her knowledge from linear al- K_K01	
	gebra	

IV. Course Content

- 1. Complex numbers.
- 2. Matrices and determinants.
- 3. Systems of linear equations.
- 4. Polynomials.
- 5. IT tools for solving problems of linear algebra available in computer labs.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	conventional lecture, dis-	test, oral exam	evaluated test, protocol
W_02	cussion, practical classes conventional lecture, dis- cussion, practical classes	test, oral exam	evaluated test, protocol
W_03	conventional lecture, dis- cussion, practical classes	test, oral exam	evaluated test, protocol
		SKILLS	
U_01	discussion, practical classes, laboratory classes, design thinking, project- based learning	test, oral exam, preparation of the project	evaluated test, protocol, files
U_02	discussion, practical classes, laboratory classes, design thinking, project- based learning	test, oral exam, preparation of the project	evaluated test, protocol, files
	SC	CIAL COMPETENCIES	
K_01	discussion, practical classes, laboratory classes, design thinking, project- based learning	test, oral exam, preparation of the project	evaluated test, protocol, files

VI. Grading criteria, weighting factors.....

LECTURE:

The completion of laboratory classes is required. Oral exam constitutes the final grade:

- 91 100% excellent
- 81 90% very good
- 71 80% good
- 61 70% satisfactory

51 – 60% sufficient
less than 51% fail
LABORATORY CLASSES:
At least 80% of attendance is required. Tests and projects implemented in the computer lab together constitute the final grade:
91 – 100% excellent
81 – 90% very good
71 – 80% good
61 – 70% satisfactory

- 51 60% sufficient
- less than 51% fail

Detailed assessment rules are given during lectures and laboratory classes.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Lecture: 15 hrs.
	Laboratory classes: 30 hrs.
	Individual consultations: 30 hrs.
	In total: 75 hrs.
Number of hours of individual student work	Preparation for classes: 30 hrs.
	Studying books: 15 hrs.
	Preparation for tests and exams: 30 hrs
	In total: 75 hrs.

VIII. Literature

Basic literature
1. S. I Grossman, Elementary linear algebra, Saunders College Publishing, Philadelphia, 1991.
2. O. Bretscher, Linear algebra with applications, Prentice Hall, New Jersey, 1997.
Additional literature
1. W. Ledermann, Complex Numbers, Library of Mathematics, Routledge and Kegan Paul, London,
1962.