Course Syllabus

I. General Information

Course name	Abstract algebra
Programme	Mathematics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	Full-time studies
Discipline	Mathematics
Language of instruction	English

Course coordinator/person responsible	Dr Małgorzata Nowak-Kępczyk

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	60	IV	8
tutorial			
classes	30	IV	
laboratory classes			
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Basic knowledge of mathematical logic, set theory, linear algebra and
	mathematical analysis.

II. Course Objectives

C1. Presentation of basic concepts and facts of abstract algebra.

C2. Familiarize students with applications of abstract algebra in other areas of mathematics and natural sciences like e.g. number theory.

		Reference to
Symbol	Description of course learning outcome	programme learning
		outcome
	KNOWLEDGE	
W_01	1 The student understands the importance of mathematics and K_W01	
	its applications, in particular its role in the context of	
	contemporary civilization's dilemmas	
W_02	The student has a good understanding of the role and	K_W02
	importance of proof in mathematics, and the notion of	
	essence of hypotheses	
W_03	The student understands the structure of mathematical	K_W03
	theories, can use mathematical formalism to construct and	
	analyze simple mathematical models in other areas of science	
W_04	The student Has advanced knowledge of the basic areas of	K_W04
	higher mathematics, in particular in calculus, algebra,	
	geometry, logic, measure and integral, probability theory,	
	differential equations, statistics, set theory, topology and	
	others selected fields of mathematics and its applications.	
W_05	The student knows basic examples both those that illustrate concrete mathematical notions, and those that allow false	K_W05
	hypotheses or unsupported argumentation	
W_06	The student knows the fundamentals of differential and	K_W07
VV_00	integral calculus of one and several variable functions, and	K_W07
	other branches of mathematics applied in differential calculus	
	with special attention of linear algebra and topology	
	SKILLS	
U_01	The student can in a clear manner, in speech and writing,	K_U01
	present correct mathematical reasoning, formulate theorems	_
	and definitions	
U_02	The student uses entential and quantifier calculus, can	K_U02
	properly use quantifiers in colloquial language	
U_03	The student is able to conduct easy and more advanced proofs	K_U03
	be means of complete induction, can define functions and	
	recurrent relations	
U_04	The student can apply classical logic system to formalize	K_U04
	mathematical theories	
U_05	The student is capable to create new object by means of	K_U05
	construction of quotient spaces or Cartesian products	
U_06	The student utilizes the language of set theory when	K_U06
	interpreting problems from the various branches of	
11.07	mathematics The student perceives presence of algebraic structures (group	V 1117
U_07	The student perceives presence of algebraic structures (group,	K_U17
	ring, field, linear space) in various mathematical contexts, not	
	necessarily in direct connection with algebra	
	SOCIAL COMPETENCIES	
K_01	The student is prepared to take into account the limits of his	K_K01
	own knowledge and skills, adequate assessment of his level of	··_···
	competence, his weaknesses, the need to constantly improve	

III. Course learning outcomes with reference to programme learning outcomes

his professional skills, and at the same time know his strengths and present a critical attitude towards opinions not supported by rational justification			
K_02	Is ready to present selected achievements of higher	К_КО5	
	mathematics in a popular way		

IV. Course Content

1. Structures and substructures.

2. Inner operations in a class. Structures with inner operation.

3. Groupoids. Commutativity, associativity and distributivity of operations in groupoids. Neutral and inverse elements of a groupoid.

4. Iterations and the degree of an element in a groupoid.

5. Algebraic structures and substructures. Generators of algebraic structures.

6. Basic types of algebraic structures.

7. Algebraic extensions of algebraic structures.

8. Homomorphisms of algebraic structures. The kernel and image of homomorphism.

9. Quotient algebraic structures.

10. Algebraic structures induced by mappings.

11. The ring of integers and ring of integers modulo p.

12. Fundamental theorem on a homomorphism of algebraic structures. A canonical homomorphism.

13. Divisors of algebraic structures.

14. Divisors of groups – normal divisors. Quotient groups. Fundamental theorem on a

homomorphism of groups. The center of a group. Groups of automorphisms.

15. Divisors of rings – ideals.

16. Symmetric groups and permutations. Groups of transformations and Cayley's theorem.

17. Cyclic groups.

18. Finite groups, index of a subgroup and Lagrange's theorem, p-groups and Sylov's theorem. The little Fermat theorem.

19. Direct products of groups. The decomposition of commutative and finite groups on cyclic groups.

20. The structure of commutative and finitely generated groups.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	Conventional lecture	Exam, oral test	Evaluated written test
W_02	Conventional lecture	Exam, oral test	Evaluated written test
W_03	Conventional lecture	Exam, oral test	Evaluated written test
W_04	Conventional lecture	Exam, oral test	Evaluated written test
W_05	Conventional lecture	Exam, oral test	Evaluated written test
W_06	Conventional lecture	Exam, oral test	Evaluated written test
SKILLS			
U_01	Practical classes	Test	Evaluated test
U_02	Practical classes	Test	Evaluated test
U_03	Practical classes	Test	Evaluated test

U_04	Practical classes	Test	Evaluated test
U_05	Practical classes	Test	Evaluated test
U_06	Practical classes	Test	Evaluated test
U_07	Practical classes	Test	Evaluated test
SOCIAL COMPETENCIES			
K_01	Discussion	Observation	Observation report
K_02	Discussion	Observation	Observation report

VI. Grading criteria, weighting factors...

LECTURE:

The completion of classes is required.

Written and oral exam together constitute the final grade:

91 - 100% (5,0) 81 - 90% (4,5) 71 - 80% (4,0) 61 - 70% (3,5) 51 - 60% (3,0) Less than 51% (2,0)

CLASSES:

At least 80% of attendance is required.

Two tests together constitute the final grade:

91 – 100% (5,0)

- 81 90% (4,5)
- 71 80% (4,0)
- 61 70% (3,5)
- 51 60% (3,0)

Less than 51% (2,0)

Detailed rules of evaluation are given on lectures and classes.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	120
Number of hours of individual student work	90

VIII. Literature

Basic literature

1. A. I. Kostrikin, Introduction to Algebra, Springer-Verlag, New York, 1982.

2. A. I. Kostrikin (Ed.), Exercises in Algebra. A Collections of Exercises in Algebra, Linear Algebra and Geometry, Gordon and Breach Publishers, 1996.

3. Białynicki-Birula, Zarys algebry, PWN, Warszawa 1987.

4. Białynicki-Birula, Algebra, PWN, Warszawa 1976.

5. Z. Opial, Algebra Wyższa, PWN, Warszawa 1976.

6. A. I. Kostrikin, Wstęp do algebry, cz.1 Podstawy algebry, Wyd. Nauk. PWN, Warszawa 2004.

7. I. Kostrikin, Wstęp do algebry, cz. 2 Algebra liniowa, Wyd. Nauk. PWN, Warszawa 2004.

8. I. Kostrikin, Wstęp do algebry, cz. 3 Podstawowe struktury algebraiczne, Wyd. Nauk. PWN, Warszawa 2005.

9. I. Kostrikin (red.), Zbiór zadań z algebry, Wyd. Nauk. PWN, Warszawa 2005.

Literatura uzupełniająca

Additional literature

1. S. Lang, Algebra (Revised Third Edition), Graduate Texts in Mathematics 211, 2002 Springer Science + Business Media, New York 2002.

2. J. Browkin, Teoria ciał, PWN, Warszawa 1977.

- 3. M.I. Kargapałow i J.I. Mierzlakow, Podstawy teorii grup, PWN, Warszawa 1989.
- 4. A.G. Kurosz, Algebra Ogólna, PWN, Warszawa 1965.