Course Syllabus

I. General Information

Course name	Genetics
Programme	Biotechnology
Level of studies (BA, BSc, MA, MSc, long-cycle	BSc
MA)	
Form of studies (full-time, part-time)	part-time
Discipline	Biological sciences
Language of instruction	English

Course coordinator/person responsible	dr hab. Hieronim Golczyk
---------------------------------------	--------------------------

Type of class (use only	Number of teaching	Semester	ECTS Points
the types mentioned	hours		
below)			
lecture	30	IV	6
tutorial			
classes	30	IV	
laboratory classes			
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes	_		
study visit			

Course pre-requisites	Completed course "Basics of Cytophysiology and Ontogenesis"
-----------------------	---

II. Course Objectives

To familiarize students with phenomena, concepts and genetic terms. Discussion of the basic theoretical models used in genetics.

Presentation of the most important techniques. Discussion of selected genetic diseases in humans. Developing the ability to solve genetic problems.

III. Course learning outcomes with reference to programme learning outcomes

Symbol	Description of course learning outcome	Reference to programme learning outcome	
	KNOWLEDGE		
W_01	presents terminology used in genetics, defines genetic	K_W01	
	phenomena and processes occurring in a living organism		
W_02	presents knowledge of genetics and genetic molecular	K_W06	
	techniques and describes their practical use		
W_03	presents the principles of occupational health and safety when	K_W09	
	using genetics techniques		
	SKILLS		
U_01	Student uses selected basic genetic techniques and tools K_U01		
U_02	Student carries out observations and performs basic K_U02		
	measurements in genetics		
U_03	For the analysis of cellular basis of genetic phenomena (e.g. cell	K_U03	
	division, chromosomes, gametogenesis) is able to use a light		
	microscope, prepare a microscopic preparation independently,		
	conduct and document microscopic observations		
U_04	Uses the selected basic statistical test (e.g. chi-square test) to	K_U14	
	analyze the results of genetic crosses.		
U_05	Learns independently in a targeted manner that covers	K_U17	
	genetics. Is able to solve selected types of genetic tasks /		
	problems		
	SOCIAL COMPETENCIES	<u> </u>	
K_01	shows appropriate habits necessary to work in the genetic	K_K04	
	laboratory, acts in accordance with the principles of		
	occupational health and safety.		

IV. Course Content

Lecture:

Mendelian inheritance; non-nuclear inheritance; foundations of population genetics; the chromosomal basis of inheritance; genetic diseases of man and animals; mitosis and meiosis; gene coupling; crossing-over and chromosome mapping; karyotype structure; mutations; size of genomes; mobile elements of the genome; chromatin - structure and function; gender determination; the role of genetic processes in evolution; the most important techniques used in genetics and their importance.

Classes:

Practical (solving tasks) mastering the most important issues of genetics by the students, ie: Mendel's law, inheritance of simple, complex, quantitative features, gene linkage, population genetics. Human genetics. Barr body. Genetic diseases. Sex-linked traits. The use of selected statistical tools in tasks and to analyze the obtained empirical data. The course of two most important processes - mitosis and meiosis and the structure of mitotic chromosomes, karyotype and chromatin - cytological techniques and microscopic observations. Chromosome mutations. The most

important techniques of genetic and cytogenetic analysis. The use of internet sources, including English-language sources in genetics.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type	
	(choose from the list)	(choose from the list)	(choose from the list)	
	KNOWLEDGE			
W_01	conventional lecture	oral or written exam	Evaluated test / written	
W_02	laboratory analysis	Test / Written test	test, written work	
W_03	textual work			
SKILLS				
U_01	laboratory classes	Test / Written test	Evaluated test / written	
U_02	practical classes		test, written work	
U_03				
U_04				
U_05				
SOCIAL COMPETENCIES				
K_01	laboratory classes	Written test	Evaluated test / written	
	practical classes		test, written work	

VI. Grading criteria, weighting factors.....

Mark	Evaluation criteria		
very good (5)	the student realizes the assumed learning outcomes at a very good level	the student demonstrates knowledge of the education content at the level of 91- 100%	
over good (4.5)	the student accomplishes the assumed learning outcomes an over good level	the student demonstrates knowledge of the education content at the level of 86-90 %	
good(4)	the student accomplishes the assumed learning outcomes at a good level	the student demonstrates knowledge of the education content at the level of 71- 85%	
quite good(3.5)	the student accomplishes the assumed learning outcomes at a quite good level	the student demonstrates knowledge of the education content at the level of 66- 70%	
sufficient (3)	the student accomplishes the assumed learning outcomes at a sufficient level	the student demonstrates knowledge of the education content at the level of 51- 65%	
insufficient (2)	the student accomplishes the assumed learning outcomes at an insufficient level	the student demonstrates knowledge of the education content below the level of 51%	

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	60
Number of hours of individual student work	90

VIII. Literature

Basic literature

Flechter H.I., Hickey G.I. 2013. Genetics. BIOS Instant Notes. Garland Science, Taylor & Francis Group. London and New York

Additional literature

Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM. 2000. An Introduction to Genetic Analysis. W. H. Freeman. New York. https://www.ncbi.nlm.nih.gov/books/NBK21766/

Brown TA. Genomes. Oxford: Wiley-Liss: Garland Science:

https://www.ncbi.nlm.nih.gov/books/NBK21128/

Genetics Education Center: http://www.kumc.edu/gec/ Macroevolution.net: http://www.macroevolution.net/

Population and Evolutionary Genetics:

http://www.ndsu.edu/pubweb/~mcclean/plsc431/popgen/popgen1.htm