Course Syllabus

I. General Information

Course name	Bioenergy technologies
Programme	Biotechnology
Level of studies (BA, BSc, MA, MSc, long-cycle	MSc
MA)	
Form of studies (full-time, part-time)	part-time
Discipline	Biological sciences
Language of instruction	English

Course coordinator/person responsible dr hab. Anna Szafranek-Nakonieczna

Type of class (use only	Number of teaching	Semester	ECTS Points
the types mentioned	hours		
below)			
lecture	15		5
tutorial			
classes	26	1	
laboratory classes			
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit	4		

Course pre-requisites	Basic knowledge of chemistry, biochemistry, physicochemical methods,
	analytical methods for biotechnology

II. Course Objectives

-

Cumbol		Reference to	
Symbol	Description of course learning outcome	programme learning	
		outcome	
	KNOWLEDGE		
W_01	The student knows the terminology associated with the subject,	K_W01	
	defines the basic phenomena and processes in the field of		
	bioenergy technologies. Has a knowledge about the resources		
	and sources of renewable energy in the energy structure of		
	country and the world.		
W_02	The student has knowledge of biochemistry, microbiology and	K_W02	
	biology used in biotechnological processes leading to energy		
	acquisition.		
W_03	The student has the necessary knowledge in the field of	K_W03	
	biotechnology solutions for energy and environmental		
	protection as well as the possibilities of their application.		
W_04	The student knows the basic laboratory techniques used in	K_W05	
	bioenergy technologies and has knowledge of the principles of		
	research planning with their use.		
W_05	The student possess the knowledge about health and safety	K_W07	
	procedures in the didactic laboratory and a laboratory dealing		
	with research on methods of obtaining bioenergy.		
	SKILLS		
U_01	The student performs laboratory analyzes in the field of	K_U01	
	obtaining bioenergy using the living organisms and biomass.		
U_02	The student has the skills about evaluation renewable energy	K_U07	
	usefulness, estimates net photosynthesis efficiency from		
	various ecosystems, biomass production; as well as biogas		
	production in the process of anaerobic fermentation.		
U_03	The student is aware of the usefulness of acquired skills in the	K_U11	
	field of biotechnological processes in power engineering,		
	environmental protection, agriculture		
U_04	The student is able to assess the environmental impact of the	K_U12	
	use of innovative techniques in the field of obtaining bioenergy		
	and growing bioenergy plants.		
U_05	The student shows responsibility and is aware of the need to	K_U15	
	reliably assess the risks resulting from the applied research		
	techniques and create conditions for safe work in the		
	laboratory.	× 140	
U_06	The student demonstrates the ability to analyze information	K_U16	
	(from literature, electronic sources) concerning innovative		
	techniques in the area of acquiring bioenergy (from algae,		
	microorganisms) with their environmental consequences.		
	Understands the need to systematically deepen your		
K 01	SUCIAL CUMPETENCIES	K K01	
K_01	The student is aware of the value and the need to develop	K_KUI	
	technologies for obtaining bioenergy in the context of caring for		
	the state of the environment and ensuring energy security.		

III. Course learning outcomes with reference to programme learning outcomes

K_02	Is able to realistically assess the risks resulting from the applied	К_КОЗ
	research techniques, notices the necessity to create conditions	
	for safe work in the laboratory. He/she demonstrates care for	
	laboratory equipment entrusted to him/her. Is ready to consult	
	experts.	

IV. Course Content

Lecture: Biomass, definitions, formation. Acquisition and use of biomass energy. Types of energy crops and their cultivation. Agglomeration of biomass. Wood and straw as biofuels. Thermal transformation of biomass - combustion systems, co-combustion, pyrolysis. Liquid biofuels, acquisition and use. Hydrogen, current and future use of hydrogen.

Laboratory classes: Introduction, health and safety regulations, general requirements. Energy sourcing by a gradient of electrochemical potential. Photochemical energy creation by microorganisms and sources of light energy. Estimation of photosynthetical efficiency by biomass growing. Quality factors of energetical potential of plants biomass. Thermal energy of composting processes. Evaluation of the effectiveness and stage of the composting process based on microbiological analyzes. Parameters of biogas production.

Study visit: A visit to the KOM-EKO (Waste Management Plant in Lublin). History of waste management. The purpose of waste segregation. Materials indicated for recycling. Fuel from biowaste and its use. Mechanical and biological waste treatment. Composting.

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	Conventional lecture	Written exam	Evaluated exam
	Laboratory analysis	Report	Report printout / Report
			file
		Written test / test	Completed and evaluated
			test
W_02	Conventional lecture	Written exam	Evaluated exam
	Laboratory analysis	Report	Report printout / Report
			file
	Praca pod kierunkiem	Written test / test	Completed and evaluated
			test
W_03	Conventional lecture	Written exam	Evaluated exam
	Laboratory analysis	Observation	Rating card / Report from
			observation
	Study visit	Report	Report printout / Report
			file
W_04	Laboratory analysis	Observation	Rating card / Report from
			observation
		Report	Report printout / Report
			file
W_05	Laboratory analysis	Observation	Rating card / Report from
			observation

V. Didactic methods used and forms of assessment of learning outcomes

SKILLS			
U_01	Laboratory classes	Observation	Rating card / Report from
			observation
		Report	Report printout / Report
			file
U_02	Laboratory classes	Observation	Rating card / Report from
			observation
		Report	Report printout / Report
			file
U_03	Laboratory classes	Observation	Rating card / Report from
			observation
U_04	Laboratory classes	Observation	Rating card / Report from
			observation
		Report	Report printout / Report
			file
U_05	Laboratory classes	Observation	Rating card / Report from
			observation
		Report	Report printout / Report
			file
U_06	Laboratory classes	Observation	Rating card / Report from
			observation
		Report	Report printout / Report
			file
SOCIAL COMPETENCIES			
K_01	Laboratory classes	Observation	Rating card / Report from
			observation
	Study visit	Report	Report printout / Report
			file
K_02	Laboratory classes	Observation	Rating card / Report from
			observation

VI. Grading criteria, weighting factors.....

Lecture: Written exam in the form of test - 90%, participation in the lectures - 10% **Classes:** Tests (4) – 90%, preparation of report and timeliness in completing them – 10%, **Study visit:** Presence at the classes – 50%, preparation of report – 50%.

Mark	Evaluation criteria	
very good (5)	the student realizes the assumed learning outcomes at a very good level	the student demonstrates knowledge of the education content at the level of 91- 100%
overgood (4.5)	the student accomplishes the assumed learning outcomes an over good level	the student demonstrates knowledge of the education content at the level of 86-90 %
good(4)	the student accomplishes the assumed learning outcomes at a good level	the student demonstrates knowledge of the education content at the level of 71- 85%

quite good(3.5)	the student accomplishes the assumed learning outcomes at a quite good level	the student demonstrates knowledge of the education content at the level of 66- 70%
sufficient (3)	the student accomplishes the assumed learning outcomes at a sufficient level	the student demonstrates knowledge of the education content at the level of 51- 65%
insufficient (2)	the student accomplishes the assumed learning outcomes at an insufficient level	the student demonstrates knowledge of the education content below the level of 51%

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	45
Number of hours of individual student work	80

VIII. Literature

Basic li	terature
----------	----------

Borowitzka M.A., Moheimani N.R. (ed.) Algae for Biofuels and Energy, Springer, 2013. Marco Aurélio dos Santos Bernardes (ed.) Biofuel production – recent developments and prospects. InTech, 2011.

Jacob-Lopes E., Queiroz Zepka L.(ed.), Frontiers in Bioenergy and Biofuels, InTech, 2017

Additional literature

Bauen A., Berndes G., Junginger M., Londo M., Vuille F., Bioenergy – a Sustainable and Reliable Energy Source. A review of status and prospects. IEA Bioenergy, 2009.

Kalt G., Kranzl L., Haas R., Bioenergy in Central Europe – recent developments, international biofuel trade and future prospects, In: Energy Resources: Developmentitor: Enner Herenio de Alcantara (ed.), Nova Science Publishers, Inc., 2011.