Course Syllabus

I. General Information

Course name	Biotechnology of sewage and waste materials
Programme	Biotechnology
Level of studies (BA, BSc, MA, MSc, long-cycle	MSc
MA)	
Form of studies (full-time, part-time)	part-time
Discipline	Biological sciences
Language of instruction	English

Course coordinator/person responsible Dr hab. Anna Szafranek-Nakonieczna

Type of class (use only the types mentioned	Number of teaching hours	Semester	ECTS Points
below)			
lecture	15	П	6
tutorial			
classes	42	II	
laboratory classes			
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit	3	11	

Course pre-requisites	Basic knowledge of chemistry, biochemistry, analytical methods in
	biotechnology, technology and bioprocess engineering.

II. Course Objectives

Acquainted with the issue of sewage and waste segregation in the ecological and economic aspects. Presentation of the existing technological solutions used in the sewage and waste materials treatment using microorganisms and plants.

Acquiring by the students practical skills for the estimation of indicators and parameters serving for sludge and waste characterization and evaluation of efficiency of biological processes in wastewater treatment and waste treatment.

Introducing students to the work of the Central Laboratory of MPWiK in Lublin

To acquaint students with the methods of water analysis, sewage and sewage sludge, in the scope of microbiological and physicochemical indicators in accordance with applicable law.

Symbol		Reference to
Symbol	Description of course learning outcome	programme learning
		outcome
	KNOWLEDGE	
W_01	Student is able to characterize waste water (sewage water) and	K_W01
	wastes based on their origin, level and type of contamination	
	and define basic biotechnological terms and processes related	
	to waste water treatment and waste management as well as	
	define environmental threats resulting from incorrect sewage	
	and waste management.	
W_02	Student can distinguish and describe fermentation technology	K_W01, K_W02
	of wastes and sludge and determine the optimal conditions of	
	their processing.	
W_03	Student possess the knowledge on conducting the analysis	K_W05
	using research tools and techniques in scope of biotechnology	
	of sewage and waste processing.	
W_04	Compares different methods of biological waste water	K_W03
	treatment and subject them into critical evaluation.	
W_05	Possess the knowledge about health and safety procedures in	K_W07
	an accredited laboratory dealing with the analysis of water and	
	sewage.	
SKILLS		
U_01	Student designs measurements of basic physicochemical	K_U01
	parameters of sewage and wastes.	
U_02	Determines the efficiency of biological removal of contaminants	K_U01
	from waste wasters (for each type of contaminant) on the basis	
	of empirical data.	
U_03	Student is aware of the usefulness of acquired skills from the	K_U11
	scope of biotechnological processes in power engineering,	
	environmental protection, agriculture. She/he can indicate the	
	usefulness of compost and post-fermentation sludge.	
U_04	Interprets processes and phenomena occurring in activated	K_U12
	sludge, biofilters and wastes; estimates threats for environment	
	connected with applying waste water treatment and waste	
	processing techniques	
U_05	Prepare written reports from performed analysis and interpret	K_U14
	obtained results, formulate conclusions.	
U_06	Possess the ability of using different sources of information	K_U14
	referring sewage and waste issues, their verification, synthesis	
	and judgment formulation, is able critically analyzing results of	
	experimental works.	
U_07	Student knows the practical application of natural science,	K_U16
	understands the need for continuous deepening of knowledge,	
	updating skills and searching for new research methods or	
	modifications already existing to analyze the state of the	
	environment. It is open to modern technologies used in	
	wastewater treatment.	
	SOCIAL COMPETENCIES	

III. Course learning outcomes with reference to programme learning outcomes

К_01	Student is aware of the necessity of controlling the state of environment and searching new technologies and solutions contributing in improving sludge quality and limiting the production of sludge and wastes.	K_K01
K_02	Student cares of his/her work place, equipment, shows the ability of work in group. Is ready to consult experts on issues related to the subject	К_КОЗ

IV. Course Content

Lecture: Characteristics of sludge and the aims for their treatment. Types of wastes and their composition. The legal basis of waste management. Transformation of organic compounds in sludge and wastes under aerobic and anaerobic conditions. Transformations of nitrogen and phosphorus compounds in sludge. Biological methods of waste water treatment (activated sludge, biofilters, hydrophytes) from organics, nutrients, heavy metals and pesticides. Technology of waste composting. Technological systems applied in waste water treatment plants. The management of wastes and sludge.

Laboratory classes: Introduction, health and safety regulations, general requirements. Determination of selected physicochemical properties of sewage (raw and treated) and wastes. Chemical and biochemical oxygen demand as estimators of waste water treatment efficiency. Biological removal of phosphate and nitrogen compounds from sewage. Aerobic and anaerobic transformations in sludge and wastes. Determination of organic and inorganic carbon contents in sludge ad wastes. The influence of toxic substances on dehydrogenases activity of activated sludge and raw sludge. The use of bioinformatic tools in the analysis of microorganisms and their usefulness in biotechnological processes. Biological test from different wastes.

Study visit: Tasks and objectives of the MPWiK laboratory in the field of water, sewage and sewage sludge. Microbiological and physico-chemical indicators of water, sewage and sewage sludge in accordance with applicable law. The latest methods, techniques, research procedures and modern measuring devices used in the analysis of water and sewage.

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	Conventional lecture	Written exam	Evaluated exam
	Laboratory analysis	Report	Report printout / Report
			file
		Written test	Completed and evaluated
			test
W_02	Conventional lecture	Written exam	Evaluated exam
	Laboratory analysis	Report	Report printout / Report
			file
		Written test	Completed and evaluated
			test
W_03	Work under the guidance	Report	Report printout / Report
			file
W_04	Laboratory analysis	Report	Report printout / Report
			file
		Written test	Completed and evaluated
			test

V. Didactic methods used and forms of assessment of learning outcomes

W_05	Laboratory analysis	Observation	Rating card / Report from
	Study visit	Report	observation Report printout / Report file
	1	SKILLS	
U_01	Laboratory classes	Observation	Rating card / Report from
			observation
		Report	Report printout / Report
			tile
U_02	Laboratory classes	Observation	Rating card / Report from
		Depart	observation
		керогі	file
11.03	Laboratory classes	Observation	Rating card / Report from
0_00			observation
		Report	Report printout / Report
			file
U_04	Laboratory classes	Obserwacja	Rating card / Report from
			observation
		Study visit	Report printout / Plik
			sprawozdania
U_05	Laboratory classes	Observation	Rating card / Report from
		Deve ext	observation
		керог	file
11.06	Laboratory classes	Observation	Rating card / Report from
0_00		Observation	observation
		Report	Report printout / Report
			file
U_07	Laboratory classes	Observation	Rating card / Report from
			observation
		Report	Report printout / Report
			file
SOCIAL COMPETENCIES			
К_01	Laboratory classes	Observation	Rating card / Report from
	Study visit	Benert	Observation
		Report	file
K 02	Laboratory classes	Observation	Rating card / Report from
N_02			observation

VI. Grading criteria, weighting factors.....

Lecture: Written exam - 90%, participation in the lectures - 10%
Classes: Tests (4) – 90%, written reports on the exercises and timeliness of their submission - 10%

Study visit: Presence at the classes – 50%, preparation of a written report – 50%.

Mark	Evaluation criteria	
very good (5)	the student realizes the assumed learning outcomes at a very good level	the student demonstrates knowledge of the education content at the level of 91- 100%
overgood (4.5)	the student accomplishes the assumed learning outcomes an over good level	the student demonstrates knowledge of the education content at the level of 86-90 %
good(4)	the student accomplishes the assumed learning outcomes at a good level	the student demonstrates knowledge of the education content at the level of 71- 85%
quite good(3.5)	the student accomplishes the assumed learning outcomes at a quite good level	the student demonstrates knowledge of the education content at the level of 66- 70%
sufficient (3)	the student accomplishes the assumed learning outcomes at a sufficient level	the student demonstrates knowledge of the education content at the level of 51- 65%
insufficient (2)	the student accomplishes the assumed learning outcomes at an insufficient level	the student demonstrates knowledge of the education content below the level of 51%

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	60
Number of hours of individual student work	90

VIII. Literature

Basic literature

Von Sperling M. Biological wastewater treatment series, Volume 1. Wastewater characteristic, treatment and disposal IWA Publishing, India, 2007 Srinivas T. Environmental biotechnology, New Age International (P) Ltd. Publishers, 2008

Srinivas T., Environmental biotechnology, New Age International(P) Ltd., Publishers, 2008 Sharma S.K., Sanghi R., Advances in water treatment and pollution prevention, Springer, 2012. Evans G.M., Furlong J.C., Environmental Biotechnology: Theory and Application. Second edition. Wiley, 2011.

Sharma S.K., Sanghi R., Advances in water treatment and pollution prevention, Springer, 2012. Additional literature

Seadi T. A., Rutz D., Prassl H., Köttner M., Finsterwalder T., Volk S., Janssen R., Biogas handbook, University of Southern Denmark Esbjerg, Denmark, 2008.

Higson S., Analytical chemistry, Oxford University Press, 2001.

Stępniewski W., Stępniewska Z., Bennicelli R.P., Gliński J., Oxygenology in outline, Institute of Agrophysics PAS, Lublin, 2005.