Course Syllabus

١. **General Information**

Course name	Algorithms and data structures
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA (1 st level)
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	English

Course coordinator	Michał Horodelski
--------------------	-------------------

Type of class (use only the types mentioned	Number of teaching hours	Semester	ECTS Points
below)			
lecture	30	IV	5
tutorial			
classes			
laboratory classes	30	IV	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	1. Programming skills
	2. Object-oriented programming,
	3. Basics of programming in C++

П. **Course Objectives**

1 Presentation of the basic abstract data types and operations on them
2 Own implementation of abstract data types
3. Improving skills in programming and analytical thinking
4. Abstract data types in C++ standard library

Symbol	Description of course learning outcome	Reference to programme learning outcome	
	KNOWLEDGE	ouccome	
W_01	The student can recognize the basic data structures and	K_W01, K_W03,	
	indicate the differences between the learned data structures.	K_W06	
W_02	The student knows basic methods that manipulates abstract	K_W03	
	data structures and their implementation.		
	SKILLS		
U_01	The student can use technical language related to the ADS	K_U06, K_U10	
	concepts and can choose the appropriate abstract data		
	structures and to a specific problem.		
U_02	The student can use abstract data structures in application, K_U08, K_U10, K_U11		
	implement own version of ADS and use frameworks or		
	libraries with prepared implementation.		
U_03	The student can solve problems from various areas of sciences	K_U10, K_U11, K_U12	
	and real life using algorithms based on abstract data		
	structures		
U_04	The student can work individually and in a team, understands	K_U17	
	the need for systematic work on long-term projects. The		
	student Can properly define the priorities within the		
	implemented IT project.		
	SOCIAL COMPETENCIES		
K_01	The student is ready to assess the level of his knowledge and	K_K01	
	skills and critically evaluates the received content.		
K_02	The student shows initiative and efficiency during the project.	К_К02	

III. Course learning outcomes with reference to programme learning outcomes

IV. **Course Content**

Pointers.
Files and I/O operations
Function and class templates.
Stack and reverse Polish notation.
Queue and examples of its use.
Forward lists and lists with sorting options.
Trees, binary search trees (BST).
Tree operations. Balancing trees. The use of trees.
Heap - priority queues.
Sorting and search algorithms.
Hash table.
Pointers to functions.

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	- Conventional lecture	 Exam/Written test 	- written work,
	- Conversational lecture	- Preparation /	- set of files,
	- Guided practice	implementation of the	- report
	 implementations in 	project	
	laboratory and	 homework programs 	
	in homework,		
	 using a projector 		
	- group work		
W_02	- Conventional lecture	- Exam/Written test	- written work,
	- Conversational lecture	- Preparation /	- set of files,
	- Guided practice	implementation of the	- report
	- implementations in	project	
	laboratory and	 homework programs 	
	in homework,		
	 using a projector 		
	- group work		
		SKILLS	
U_01	- Practical classes	- Exam/Written test	- written work,
	- Project-based	- Preparation /	- set of files,
	Learning	implementation of the	- report
	- implementations in	project	
	laboratory and	 homework programs 	
	in homework,	 activity during the 	
	 using a projector 	laboratory	
	- design thinking		
	- group work		
U_02	- Practical classes	- Exam/Written test	- written work,
	- Project-based	- Preparation /	- set of files,
	Learning	implementation of the	- report
	- implementations in	project	
	laboratory and	- homework programs	
	in homework,	- activity during the	
	 using a projector 	laboratory	
	- design thinking		
	- group work		
U_03	- Practical classes	- Exam/Written test	- written work,
	- Project-based	- Preparation /	- set of files,
	Learning	implementation of the	- report
	- implementations in	project	
	laboratory and	 homework programs 	
	in homework,	- activity during the	
	- using a projector	laboratory	
	- design thinking	-	
	- group work		
U_04	- Practical classes	- Exam/Written test	- set of files,

Didactic methods used and forms of assessment of learning outcomes ٧.

	 Group work Project-based Learning implementations in laboratory and in homework, using a projector design thinking group work 	 Preparation / implementation of the project homework programs activity during the laboratory 	- report
	SC	DCIAL COMPETENCIES	
К_01	 Discussion Conventional lecture Conversational lecture group work Project-based design thinking Learning 	 Exam/Written test Preparation / implementation of the project homework programs activity during the laboratory 	- written work, - set of files, - report
К_02	 Discussion Conventional lecture Conversational lecture group work Project-based design thinking Learning 	 Exam/Written test Preparation / implementation of the project homework programs activity during the laboratory 	- set of files, - report

VI. Grading criteria, weighting factors.....

Passing laboratory: verification by written tests (20% of the final mark), activity in laboratories (10% of the final mark), homework covering particular topics of data structures (20% of the final mark) and a test (50% of the final mark).

Passing the lecture: written and oral exam (for people who have passed the laboratory), knowledge provided during the lecture.

Grading scale: less than 50% insufficient (2.0)

Detailed rules of assessment are given to students with each edition of the subject.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Lecture 30
	Laboratory 30
	Consultations 30
Number of hours of individual student work	Preparation for classes and home projects 30
	Studying Literature 10
	Preparation for tests and exam 20

VIII. Literature

Basic literature

1. M. A. Weiss, Data Structures Algorithm Analysis in C++, 4th edition, Pearson, 2014

2. Clifford A. Shaffer, Data Structures and Algorithm Analysis Edition 3.2 (C++ Version), published by Dover Publications, 2013

3. C++ Language Tutorials on the website cplusplus.com, site:

http://www.cplusplus.com/doc/tutorial/, 2021

Additional literature

1. Cormen T.H., Leiserson C.E., Rivest R.L., Introduction to Algorithms, Wyd. Massachusetts Institute of Technology, 2009

2. Knuth D E. The art of computer programming. Volume 1, Volume 2, Volume 3

3. C++ language Tutorials on the website cppreference.com, site:

https://en.cppreference.com/w/cpp/language, 2021