Course Syllabus

I. General Information

Course name	Computer architecture
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle MA)	ВА
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	English

Course coordinator	Prof. DSc. Anatoliy Melnyk

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	15	1	3
tutorial			
classes			
laboratory classes	15	1	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Knowledges of mathematics and computer science at the secondary	
	school level	

II. Course Objectives

C1 - Transfer of knowledge about data representation in computer		
C2 - Transfer of knowledge about the computer building		
C3 - Transfer of knowledge about the computer general organization and functioning		

Symbol	Description of course learning outcome	Reference to programme learning outcome
	KNOWLEDGE	
W_01	Student learns about the properties of von NeumannK_W01computer architecture, main computer functions, functionalcomputer units, their tasks and main characteristics, computertypes, principles of memory organization with random,sequential, associative and ordered access.	
W_02	Student learns how instructions are executed in computer, instruction coding, instruction formats, addressing modes, and classification of computer architecture	K_W01
W_03	Student learns positional number system, methods of numbers conversion from decimal to binary notation and vice versa, representations of an integer inside a computer: unsigned, sign-and-magnitude, one's complement, and two's complement, IEEE 754 standard of numbersK_W01	
W_04	Student learns how to perform arithmetic operations on fixed- and floating-point numbers	
W_05	Student learns the Boolean algebra and its application to the logic circuits design	K_W01
W_06	Student learns the design of combinational and sequential circuits, the operation of synchronous and asynchronous triggers	K_W01
	SKILLS	
U_01	Student is able to convert numbers from one numbering system to another	K_U04, K_U06, K_U30
U_02	Student is able to design simple digital circuits and combinational circuits.	K_U04,
U_03	Student is able to create a simple program in assembler	K_U04, K_U06
	SOCIAL COMPETENCIES	
K_01	Student is able to discuss the architecture of contemporary computer systems	К_КО1
K_02	The student can conduct a critical evaluation of the received information	К_КО1

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

Lectures:

Development of computer architecture, main computer functions, functional computer units, their tasks and main characteristics, technological aspects, Moore's law, types of computers, random access memory organization, associative memory, sequential memory, register memory of the

processor, instructions execution in computer, instruction coding, instruction formats, list of instructions, addressing modes, classification of computer architecture, data representation, positional number system, positional number system, methods of numbers conversion from decimal to binary notation and vice versa, representations of an integer inside a computer: unsigned, sign-and-magnitude, one's complement, and two's complement, IEEE 754 standard of numbers representation, performing operations on floating point numbers, main data processing operations, basics of digital technology, logic gates, combinational circuits, sequential circuits, logical operations, arithmetic operations on fixed and floating point numbers, design of combinational and sequential circuits, synchronous and asynchronous operation, computer processors of CISC, RISK, superscalar and vector architecture, VLIW processors, arithmetic-logic unit, control unit, multilevel memory organization. Laboratory classes:

Data representation, positional numeral system, conversion from binary numeral system into decimal and vice versa, representation of signed numbers, fixed point format, operations execution on fixed points numbers, adding signed and unsigned binary numbers, multiplication of signed and unsigned binary numbers, floating point format, arithmetic operations on floating point numbers, basics of digital technology, logic gates, combination circuits, sequential circuits, combinational and sequential circuits design.

Symbol			
Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01,	Conventional lecture	Test / Written	Examination
W_04,		test	card / Grade
W_05,			card
W_06			
W_02,	Conventional lecture,	Exam / Written	Examination
W_03	Laboratory	Test, Test / Written	card / Grade
_	classes	test, Presentation	card, Evaluated
		,	written paper, Evaluated
			test / written
			test, Protocol / paper
			printout/ paper
			file
		SKILLS	llie
11.01			E al atal
U_01	Laboratory classes,	Test of practical	Evaluated
	Practical classes	skills	test / written
			test, Protocol / paper
			printout/ paper
			file
U_02	Conversational	Test of practical	Evaluated
	Lecture, Practical classes	skills	test / written
			test
U_03	Conversational	Test of practical	Evaluated
	Lecture, Practical classes	skills	test / written
			test
	S	OCIAL COMPETENCIES	
K_01	Conversational	Exam / Written	Examination
		•	

V. Didactic methods used and forms of assessment of learning outcomes

	Lecture, Practical classes	Test, Test of practical skills	card / Grade card, Evaluated test / written test, Protocol / paper printout/ paper file
K_02	Work in Pairs (Think-Pair- Share)	Test of practical skills	Evaluated written paper, Evaluated test / written test, Protocol / paper printout/ paper file

VI. Grading criteria, weighting factors.....

The condition for passing the exercises is the presence of the student at the classes, the execution of the exercises and receiving grades, obtaining a positive grade in written tests.

The exam (for those who passed the exercises) consists in carrying out a test of the knowledge provided during the lecture. The examination grade is formed on the basis of two components: 60% - written answers to test tasks and oral answers in case of doubt, 40% - grade obtained from exercises.

Grading is performed on the following scale:

- 91 100% very good (5.0),
- 81 90% plus good (4.5),
- 71 80% good (4.0),
- 61 70% plus sufficient (3.5),
- 50 60% sufficient (3.0),
- below 50% insufficient (2.0).

Detailed rules of assessment are given to students with each edition of the subject.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	30
Number of hours of individual student work	Preparation for classes 5
	Studying Literature 5
	Preparation for the colloquium 5
	Total number of hours 15

VIII. Literature

Basic literature

1. Hennessy, J.L., Patterson, D.A. Computer Architecture: A Quantitative Approach. 6th ed., Morgan-Kaufmann, 2018.

2. Andrew S. Tanenbaum. Structured Computer Organization (6th Edition), Helion, 2012

3. Stallings William. Computer organization and architecture (11th edition), 2018.

4. L. Null, J. Labur, The Essentials of Computer Organization and Architecture (3rd Edition), Helion, 2016

5. Melnyk A., Computer architecture. VOD, 2008

Additional literature

1. Melnyk A., Melnyk V. Personal Supercomputers. LPP, 2013.

2. J. Biernat, Arytmetyka komputerów, PWN, 1996

3. S. Gryś, Arytmetyka komputerów, PWN, 2007.