Course Syllabus

I. General Information

Course name	Computer image analysis
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	ВА
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	polish

Course coordinator	Dr Krzysztof Bartyzel
--------------------	-----------------------

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	30	VI	6
tutorial			
classes			
laboratory classes	30	VI	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course coordinator	Knowledge of basic and general education subjects covered by the	
	curriculum with special emphasis on programming in the graphic	
	environment	
	Fundamentals of programu	

II. Course Objectives

Introduction to basic methods of digital image processing and analysis	
Introduction to basic applications of methods of digital image analysis	

O: make al		Reference to	
Symbol	Description of course learning outcome	programme learning	
		outcome	
	KNOWLEDGE		
W_01	Knows basic algorithms and examples of their practical	K_W03, K_W11	
	implementation		
W_02	Has a basic knowledge of the construction and management of	K_W04	
	information systems		
W_03	Has general knowledge of algorithmics, design and	K_W06, K_W11	
	programming, operating systems, computer networks, software		
	engineering, databases, artificial intelligence and computer		
	graphics		
SKILLS			
U_01	Is able to independently obtain and use information to solve	K_U02	
	specific computer problems from technical documentation,		
	help files and the Internet and available literature		
U_02	Is able to use specialist vocabulary in the field of computer	K_U04	
	science		
SOCIAL COMPETENCIES			
K_01	Is aware of the level of his/her knowledge and skills,	К_К01	
	understands the need for further education and improvement		
	of professional and personal competences		

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

- * Representation of digital images, image information.
- * Colour models, image types and their characteristics.
- * Acquisition and preprocessing of digital images.
- * Ways of describing images, image histogram.
- * Basic operations on digital images.
- * Edge detection methods.
- * Skeletonisation methods.
- * Image filtering methods.
- * Morphological operations.

* Examples of practical applications of digital image processing and analysis methods.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type	
	KNOWLEDGE			
W_01	Discussion, Conventional lecture	Colloquium / written exam	Completed and graded colloquium / test / written test	
W_02	Discussion, Conventional lecture	Colloquium / written exam	Completed and graded colloquium / test / written	

			test
W_03	Discussion, Conventional lecture	Colloquium / written exam	Completed and graded colloquium / test / written test
		SKILLS	
U_01	Practical exercises design thinking	Colloquium / written exam	Completed and graded colloquium / test / written test
U_02	Practical exercises design thinking	Colloquium / written exam	Completed and graded colloquium / test / written test
SOCIAL COMPETENCIES			
K_01	Project method design thinking	Validation of practical skills	Completed and graded colloquium / test / written test

VI. criteria, weighting factors

The assessment consists of:

- * activity during classes 20% (attendance above 80%, active participation in classes)
- * credit tests 40% (the test covers theoretical issues presented at the lectures and classes)

* completion of homework 40%.

Grades 2: 0-39% 3: 40-49% 3,5: 50-59% 4: 60-74% 4,5: 75%-84% 5: 85-100%

At grade 3 the student will be able to

- * Formulate basic concepts of digital image processing and analysis.
- * Convert the mechanisms of digital images acquisition.
- * Implement basic, simplest algorithms from digital image processing and analysis

In the grade 4 the student is able to

- * Formulate most of the concepts of processing and analysis of digital images.
- * Formulate most of the concepts of digital image processing and analysis.
- * Implement all algorithms discussed in the field of digital image processing and analysis.

In the grade 5 the student is able to

* Formulate all the presented concepts in the field of processing and analysis of digital images.

* Apart from the previously mentioned: present the concept of advanced algorithms (filtering, morphological operations) in digital image processing and analysis

* Perform an implementation of all the discussed and present a concept of implementation of at least one not discussed algorithm in the field of processing and analysis of digital images

VII. Grading criteria, weighting factors

Form of activity	Number of hours
Number of contact hours (with the teacher)	90
Number of hours of individual student work	60

VIII. Literature

Basic literature

Malina W., Smiatacz M.: Metody cyfrowego przetwarzania obrazów. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2005

Tadeusiewicz R., Korohoda P.: Komputerowa analiza i przetwarzanie obrazów. Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków 1997.

Wojnar L., Majorek M.: Komputerowa analiza obrazu. Fotobit – Design, Warszawa 1994 Additional literature

Pavlidis T.: Grafika i przetwarzanie obrazów. WNT, Warszawa 1987

Tadeusiewicz R., Flasiński M.: Rozpoznawanie obrazów. PWN, Warszawa 1991