Course Syllabus

I. General Information

Course name	Linear algebra
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	ВА
MA)	
Form of studies (full-time, part-time)	full-time,
Discipline	Informatics
Language of instruction	english

Course coordinator	Dr Grzegorz Dymek
	DI OIZCGOIZ DYINCK

	1		
Type of class (use only	Number of teaching	Semester	ECTS Points
the types mentioned	hours		
below)			
lecture	15	1	5
tutorial			
classes			
laboratory classes	30	1	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	1. Ability to do arithmetical calculations on real numbers.
	2. Knowledge of basic formulas and functions.

II. Course Objectives

1. Gaining knowledge of fundamental notions of linear algebra and mathematical methods used in it.

2. Gaining skills of formulate various problems in the language of linear algebra.

3. Preparing to further study of computer science.

Symbol	Description of course learning outcome	Reference to programme learning outcome
	KNOWLEDGE	
W_01	Student knows fundamental notions and theorems of linear al- gebra (for example, determinant, rank of a matrix, Cramer's formulas)	К_W02
W_02	Student knows typical problems which can be described and solved by methods of linear algebra	K_W02
W_03	Student knows basic examples illustrating listed notions	K_W02
SKILLS		
U_01	Student presents correct mathematical reasoning, formulate theorems and definitions	K_U21
U_02	Student has ability to find own methods of solving various problems (fundamentals of matrix calculus, determinants, systems of linear equations)	K_U21
SOCIAL COMPETENCIES		
K_01	Student is able to evaluate his/her knowledge from linear al- gebra	K_K01

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

- 1. Complex numbers.
- 2. Matrices and determinants.
- 3. Systems of linear equations.

4. Polynomials.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
KNOWLEDGE			
W_01	conventional lecture, dis-	test, oral exam	evaluated test, protocol
	cussion, practical classes		
W_02	conventional lecture, dis-	test, oral exam	evaluated test, protocol
	cussion, practical classes		
W_03	conventional lecture, dis-	test, oral exam	evaluated test, protocol
	cussion, practical classes		
SKILLS			
U_01	conventional lecture, dis-	test, oral exam	evaluated test, protocol
	cussion, practical classes		
U_02	conventional lecture, dis-	test, oral exam	evaluated test, protocol
	cussion, practical classes		
SOCIAL COMPETENCIES			
K_01	conventional lecture, dis-	test, oral exam	evaluated test, protocol
	cussion, practical classes		

VI. Grading criteria, weighting factors.....

91% – 100% excellent (5.0) 81% – 90% very good (4.5) 71% – 80% good (4.0)

61% – 70% satisfactory (3.5)

50% – 60% sufficient (3.0)

less than 50% fail (2.0)

Grade insufficient

(W) - student does not know fundamental notions discussed on classes;

(U) - student cannot solve basic problems from linear algebra;

(K) - student is unconscientious, does not participate in classes, does not do notes.

Grade sufficient

(W) - student knows fundamental notions discussed on classes. He/She knows examples illustrating these notions;

(U) - student can solve basic problems from linear algebra. He/She can apply basic techniques of solving such problems;

(K) - student participates in classes, does notes.

Grade good

(W) - student knows well fundamental notions discussed on classes. He/She has a knowledge of basic properties of these notions and their proofs. He/She knows how use these properties to solve basic problems;

(U) - student can solve basic problems from linear algebra. He/She can apply more advanced techniques of solving such problems. He/She can use basic properties of notions;

(K) - student is prepared to classes. He/She has a knowledge of basic properties of these notions and their proofs.

Grade very good

(W) - student knows well fundamental notions discussed on classes. He/She has a knowledge of more advanced properties of these notions and their proofs. He/She knows how use these properties to solve more advanced problems. He/She knows more important techniques of proofs;

(U) - student can solve more advanced problems from linear algebra. He/She can apply more advanced techniques of solving such problems. He/She can use more advanced properties of notions. He/She can perform simple proofs;

(K) - student participates actively in classes, asks questions, proposes solutions.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Lecture: 15 hrs.
	Classes: 30 hrs.
	Individual consultations: 30 hrs.
	In total: 75 hrs.
Number of hours of individual student work	Preparation for classes: 30 hrs.
	Studying books: 15 hrs.
	Preparation for tests and exams: 30 hrs
	In total: 75 hrs.

VIII. Literature

Basic literature

1. S. I Grossman, Elementary linear algebra, Saunders College Publishing, Philadelphia, 1991.

2. O. Bretscher, Linear algebra with applications, Prentice Hall, New Jersey, 1997.

Additional literature

1. W. Ledermann, Complex Numbers, Library of Mathematics, Routledge and Kegan Paul, London, 1962.