Course Syllabus

I. General Information

Course name	Optimization methods
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Mathematics, Informatics
Language of instruction	English

Course coordinator/person responsible	dr Małgorzata Nowak-Kępczyk

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	15	5	3
tutorial			
classes			
laboratory classes	15	5	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites Introduction to Calculus and Integral Calculus, Linear algebra

II. Course Objectives

C1 - Familiarization of students with the basics of optimization methods and their applications for solving practical problems

0		Reference to	
Symbol	Description of course learning outcome	programme learning	
		outcome	
	KNOWLEDGE		
W_01	The student understands the importance of informatics and its	K_W01, K_W03,	
	applicationsThe student knows the basic concepts related to	K_W06	
	the optimization method		
W_02	The student knows selected issues of linear programming	K_W01, K_W03,	
		K_W06	
W_03	The student understands the importance of optimization	K_W01, K_W03,	
	methods to solve practical problems	K_W06	
SKILLS			
U_01	The student is able to apply the basic concepts of optimization	K_U07, K_U11 K_U12	
methods			
11.02			
U_02	The student is able to use selected methods of linear	K_U07, K_U11 K_U12	
programming			
U_03	The student is able to implement selected algorithms of	K U07, K U11 K U12	
_	optimization methods	_ /	
	-		
SOCIAL COMPETENCIES			
K_01	Is ready to assess the level of his or her knowledge and skills.	К_КО1, К_КО2	
	The student can conduct a critical evaluation of the received		
	information.		
K_02	K_02 He can show initiative and efficiency while working on a K_K01, K_		
	project		

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

a.i.1. Linear programming. Introduction. Practical examples. General, canonical, standard form. a.i.2. Simplex algorithm. Dual task problem.

a.i.3. Linear programming on discrete sets.

- a.i.4. Gradient methods. Newton's method
- a.i.5. Transportation problem.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods (choose from the list)	Forms of assessment (choose from the list)	Documentation type (choose from the list)
	KNOWLEDGE		
W_01	Conventional lecture, guided practice	Written exam/ Test	Examination card/ Grades card
W_02	Conventional	Written exam/ Test	Examination card/ Grades

	lecture, guided practice		card
W_03	Conventional lecture, guided practice	Written exam/ Test	Examination card/ Grades card
	SKILLS		
U_01	Practical classes design thinking	Written exam/ Test	Written test, filled and evaluated test paper
U_02	Work in Pairs (Think-Pair-Share) design thinking	Project	Printout
U_03	Group work design thinking	Project	Printout
SOCIAL COMPETENCIES			
K_01	Discussion design thinking	Written exam/ Test	Written test, filled and evaluated test paper
К_02	PBL (Problem- Based Learning) design thinking	Project	Printout

VI. Grading criteria, weighting factors...

Passing classes – 2 tests during classes.

Written exam – for people who have passed the classes.

Detailed grading rules are given to students with each edition of the subject.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	60
Number of hours of individual student work	30

VIII. Literature

Basic literature

Hamdy A. Taha, Operations Research An Introduction, ISBN 10: 1-292-16554-5ISBN 13: 978-1-292-16554-7

D. Bertismas, J. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific Series in Optimization and Neural Computation, 6, ISBN-13: 978-1886529199, ISBN-10: 1886529191

F. Hillier, G. Lieberman, ISE Introduction to Operations Research, ISBN-13: 978-1260575873, ISBN-

10: 126057587X

Additional literature

D. Bartsekas, Nonlinear Programming, ISBN-13: 978-1886529052, ISBN-10: 1886529051