Course Syllabus

I. General Information

Course name	Graph and network theory
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	ВА
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	English

Course coordinator	Małgorzata Nowak-Kępczyk

Type of class (use only the types mentioned	Number of teaching hours	Semester	ECTS Points
Josturo	20	M	F
tutorial	50	V	
classes			-
laboratory classes	30	V	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Linear algebra with analytical geometry Basic information about graphs - Discrete mathematics Basic information on algorithm analysis and computational complexity Knowledge of abstract data structures
	Ability to program in Java (or other object-oriented language)

II. Course Objectives

C1 - To familiarize students with issues related to graph theory and network.
C2 - Acquisition by students of skills to study the properties of the graph algorithms discussed.
C3 - Improving programming skills in the field of abstract data structures.

Symbol		Reference to	
Symbol	Description of course learning outcome	programme learning	
		outcome	
	KNOWLEDGE		
W_01	The student has general knowledge of theoretical computer	K_W06	
	science, algorithms designing and programming, software engineering,		
W_02	The student is familiar with the selected algorithms and	K_W03	
	examples of their practical implementation		
W_03	The student has basic knowledge of building and managing	K_W04	
	computer systems, operating systems and computer networks,		
SKILLS			
U_01	The student is able to apply the basic concepts and methods in	K_U02, K_U04	
	the field of graph theory and network		
U_02	Student is able to implement basic graph algorithms in the	K_U02, K_U04	
	selected programming language		
U_03	Student is able to evaluate graph algorithms for their	K_U02, K_U04	
	correctness and computational complexity		
SOCIAL COMPETENCIES			
K_01	Student is able to form opinions on the discussed issues of	K_K01	
	graph theory and network, is aware of the level of their		
	knowledge and skills, understands the need for training		
	-		

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

1. Comparison of computer graph representation methods.

- 2. Euler and Hamiltonian cycle. Examples of graph processing algorithms.
- 3. Searching algorithms in depth (DSF). Methods of implementation and application.
- 4. Searching algorithms across (BSF). Methods of implementation and application.
- 5. Minimal spanning tree. Comparison of Prim, Kruskal and Boruvka algorithms.
- 6. The tree of the shortest paths. Dijkstra's algorithm.
- 7. Graphs with negative weights. Bellman Ford, Floyd Warshal, Johnson algorithms.
- 8. Basic concepts of flow networks. Ford Fulkerson algorithm.
- 9. Maximum association in a graph. Hall's theorems. Examples of using flow networks.
- 10. Coloring of graph vertices. Basic definitions and theorems. Greedy algorithm.
- 11. Methods of sequential selection of vertices.
- 12. Coloring the edges of the graph. Application of graph coloring.
- 13. Planar graphs. Coloring regions.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
KNOWLEDGE			
W_01	Conventional lecture	Exam, tests	Filled, evaluated tests and
			exams

W_02	Discussion, problem solving	Evaluation during classes	Grade sheets
W_03	Guided practice	Submitted spreadsheets,	Printouts
	Own work with a	documentation	
	computer		
W_03	E-learning lecture	Exam, tests	Scanned, filled, evaluated
			tests and exams
SKILLS			
U_01	Practical classes	Submitted spreadsheets,	Printouts
	design thinking	documentation	
U_02	Practical classes	Submitted spreadsheets,	Printouts
	design thinking	documentation	
U_03	Practical classes	Submitted spreadsheets,	Printouts
	design thinking	documentation	
U_03	E-learning discussion	Observation	Notes
	design thinking		
SOCIAL COMPETENCIES			
K_01	Work in pairs	Submitted spreadsheets,	Printouts
	design thinking	documentation	

VI. Grading criteria, weighting factors..

Completing classes based on the project, developing a given problem, implementing the discussed algorithms, involvement and work in class, tests results - detailed requirements and assessment criteria are established in the class with students.

Below 50% of all possible points obtained is unsatisfactory. Detailed criteria are given to students with each edition of the subject.

Written exam: below 50% unsatisfactory.

VII. Obciążenie pracą studenta

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	90
Number of hours of individual student work	60

VIII. Literature

Basic literature

R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer-Verlag, New York, 1999.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to algorithms, 3rd ed. The MIT Press Cambridge, Massachusetts London, England

R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms 3rd Edition, ISBN-13: 978-0201316636 ISBN-10: 0201316633

Additional literature

M. Kubale, Optymalizacja dyskretna - modele i metody kolorowania grafów, Wydawnictwo

Naukowo-Techniczne, Warszawa, 2002.

R. J. Wilson, Wprowadzenie do teorii grafów, PWN, Warszawa, 2008.