Course Syllabus

Ι. **General Information**

Course name	Application of mathematics
Programme	mathematics
Level of studies (BA, BSc, MA, MSc, long-cycle	ВА
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	mathematics
Language of instruction	english

Course coordinator/nerson responsible Dr Wies	
Course coordinatory person responsible Di Wies	aw Główczyński

Type of class (use only	Number of teaching	Semester	ECTS Points
the types mentioned	hours		
below)			
lecture			10
tutorial			
classes			
laboratory classes			
workshops			
seminar	30 +30	V+VI	
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites -----

Course Objectives II.

C1. To prepare the BA thesis.
C2. To prepare the presentation of the BA thesis.
C3. To prepare for the BA thesis defence.

Symbol	Description of course learning outcome	Reference to programme learning outcome
	KNOWLEDGE	
W_01	The student understands the importance of mathematics and its applications, in particular its role in the context of contemporary civilization's dilemmas.	K_W01,
W_02	The student has a good understanding of the role and importance of proof in mathematics, and the notion of essence of hypotheses.	K_W02,
W_03	The student understands the structure of mathematical theories, can use mathematical formalism to construct and analyze simple mathematical models in other areas of science.	K_W03,
W_04	The student has advanced knowledge of the basic areas of higher mathematics, in particular in calculus, algebra, geometry, logic, measure and integral, probability theory, differential equations, statistics, set theory, topology and others selected fields of mathematics and its applications.	K_W04,
W_05	The student knows basic examples both those that illustrate concrete mathematical notions, and those that allow false hypotheses or unsupported argumentation.	K_W05,
W_06	The student knows selected notions and methods of mathematical logic, set theory and discrete mathematics contained in the fundamentals of other branches of mathematics.	K_W06,
W_07	The student knows the fundamentals of differential and integral calculus of one and several variable functions, and other branches of mathematics applied in differential calculus with special attention of linear algebra and topology.	K_W07
	SKILLS	
U_01	The student can in a clear manner, in speech and writing, present correct mathematical reasoning, formulate theorems and definitions.	K_U01,
U_02	The student uses sentential and quantifier calculus, can properly use quantifiers in colloquial language.	K_U02,
U_03	The student is able to conduct easy and more advanced proofs be means of complete induction, can define functions and recurrent relations.	K_U03,
U_04	The student can apply classical logic system to formalize mathematical theories.	K_U04,
U_05	The student is capable to create new object by means of construction of quotient spaces or Cartesian products	K_U05,
U_06	The student can examine and explain functional interconnections, expressed in the form of formulas, tables, schemes and apply them in practical problems.	K_U11,
U_07	The student uses definition of the integral of one and several variable real functions, can explain the analytical and geometrical sense of this notion	K_U13,
U_08	The student is able to integrate one and several variable functions by parts and substitution, can interchange ordering of integration, can express the area of smooth surfaces and volume as appropriate integrals	K_U14,

III. Course learning outcomes with reference to programme learning outcomes

U_09	The student can utilize numerical tools and methods to solve selected	K_U15,
_	problems of differential and integral calculus, in particular those based	_
	on its applications	
U_10	The student uses the notion of linear space, vector, linear	K_U16,
	transformation and matrix	
U_11	The student can compute determinants and knows their properties, can	K_U18,
_	give geometrical interpretation of determinant and understands its	_
	connection with mathematical analysis.	
U_12	The student can interpret the system of ordinary differential equations	K_U22,
	snace	
U 13	The student knows at least one foreign language.	K 1137
11 14	The student is able to use his knowledge to formulate complex and	K_U38
0_14	unusual mathematical problems in a correct and understandable	K_030,
	way, discuss them and methods of solving them and present	
	mathematical results and contents, in particular using information	
	and communication techniques.	
U_15	The student can properly select sources of information, in particular	K_U39,
	electronic, based on their analysis and evaluation, and synthesize the	
	knowledge gathered on their basis.	
U_16	The student is able to communicate in the strict language of	K_U40,
	mathematicians, use specialist terminology, present and evaluate	
	higher mathematics	
11 17	The student can plan and organize own work and effectively perform	K 1141
0_1/	and coordinate tasks in a team, also of an interdisciplinary nature.	K_041,
U 18	The student can independently acquire knowledge and develop	K U42
_	professional skills and plan their own path of self-education and	-
	consistently strive to achieve it throughout their lives.	
	SOCIAL COMPETENCIES	
K_01	The student is prepared to take into account the limits of his own	К_КО1,
	knowledge and skills, adequate assessment of his level of	
	competence, his weaknesses, the need to constantly improve his	
	professional skills, and at the same time know his strengths and	
	present a critical attitude towards opinions not supported by rational	
	justification.	
K_02	The student is prepared to appreciate the role and importance of	К_КО2,
_	knowledge in solving cognitive and practical problems, typical of	
	occupations and workplaces appropriate for graduates in the field of	
	mathematics and consulting experts in the case of difficulties in	
	solving the problem.	<u> </u>
K_03	The student is ready to runni social obligations resulting from the	к_киз,
	nature of work typical of mathematics, in particular ne actively	
	works for the public interest.	
К_04	The student is ready to responsibly carry out professional roles,	К_КО4,
	respect professional achievements and traditions, and observe	
	professional ethics and act on behalf of others.	
K_05	The student is ready to present selected achievements of higher	К_КО5
	mathematics in a popular way.	

IV. **Course Content**

Defining the topic of work. Preparing the source materials. Developing the source materials. Preparing the BA

thesis content. Thesis edition. Preparing for defense.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods (choose from the list)	Forms of assessment (choose from the list)	Documentation type (choose from the list)
		KNOWLEDGE	· · ·
W_01-	conversational lecture,	paper, oral test	BA thesis, protocol
W_07	discussion		
		SKILLS	
U_01-	conversational lecture,	paper,oral test	BA thesis, protocol
U_17	discussion		
		SOCIAL COMPETENCIES	
K_01-	conversational lecture,	paper, oral test	BA thesis, protocol
K_05	discussion		

VI. Grading criteria, weighting factors

Assessment based on the advancement of the BA thesis and oral test:

- 91 100% excellent
- 81 90% very good
- 71 80% good
- 61 70% satisfactory
- 51 60% sufficient

less than 51% fail

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Seminar: 60 hrs.
	Individual consultations: 60 h
	In total: 120 h
Number of hours of individual student work	Preparing for seminar: 60 h
	Studying books: 120 h
	Preparing the BA thesis content: 180 h
	Preparing for defense: 120 h
	In total: 480 h

VIII. Literature

Basic literature
Depending on the topic of the BA thesis.
Additional literature
Depending on the topic of the BA thesis.