Course Syllabus

I. General Information

Course name	Fundamentals of algorithms and programming
Programme	Informatics/Mathematics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	Full-time
Discipline	Informatics, mathematics
Language of instruction	English

Course coordinator	Dorota Pylak, PhD
	= 0.000.1 1.00.1 1.00

Type of class (use only	Number of teaching	Semester	ECTS Points
the types mentioned	hours		
below)			
lecture	30	INF: II	INF: 6
		MAT: II,IV,VI	MAT: 5
tutorial			
classes			
laboratory classes	30	INF: II	
		MAT: II,IV,VI	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Introduction to computer science.	
Basic programming skills.		

II. Course Objectives

Familiarizing students with the basics of Java programming
Presentation of the sorting and the searching algorithms
Introduction to the basics of object-oriented programming

III. Course learning outcomes with reference to programme learning outcomes

Symbol		Reference to
,	Description of course learning outcome	programme learning outcome
	KNOWLEDGE	
W_01	The student knows the syntax of the Java language: types,	INF: K_W03, K_W06
	selection statements and loop statements	MAT: K_W01, K_W04
W_02	The student knows how to define a simple class: its fields,	INF: K_W01, K_W06
	constructors and methods.	MAT: K_W01, K_W04
W_03	The student knows how to define one and two-dimensional	INF: K_W01, K_W06
	arrays and how to write functions that operate on them.	MAT: K_W01, K_W04
W_04	The student knows the operating principles and construction	INF: K_W06
	of recursive functions.	MAT: K_W01, K_W04
W_05	The student presents the basic sorting and searching	INF: K_W01, K_W03,
	algorithms.	K_W06
		MAT: K_W01, K_W04
W_06	The student knows the definitions of the enumeration type.	INF: K_W06
		MAT: K_W01, K_W04
W_07	The student knows the basic applications of the Scanner,	INF: K_W01
	String classes.	MAT: K_W01, K_W04
	SKILLS	
U_01	The student can write more advanced programs.	INF: K_U02, K_U04,
		K_U07, K_U08,
		K_U09, K_U11,
		K_U12, K_U17
		MAT: K_U37
U_02	The student is able to create a functions that operate on the	INF: K_U02, K_U04,
	one and multidimensional arrays, select parameters and	K_U11
	determine the result of the function.	MAT: K_U37
U_03	Student is able to create a recursive function for the given	INF: K_U02, K_U04,
	problem, can predict the result of the recursive function.	K_U09
		MAT: K_U37
U_04	Student is able to define a simple class, write a program that	INF: K_U02, K_U04,
	operates on the simple classes, and uses previously created	K_U11, K_U12
	functions.	MAT: K_U37
U_05	The student can read data using the Scanner class.	INF: K_U02, K_U04,
		K_U11
		MAT: K_U37
U_06	The student can use the enumeration type.	INF: K_U02, K_U04,
		K_U11
		MAT: K_U37
U_07	The student is able to implement selected sorting and	INF: K_U02, K_U04,
	searching algorithms	K_U07, K_U09
		MAT: K_U37
	SOCIAL COMPETENCIES	
K_01	The student is able to formulate a solution to the given	INF: K_K01
	problem, is open to the new solutions	MAT: K_K02
K_02	The student solves the given problems individually and while	INF: K_K02
	working in a group.	MAT: K_K02, K_K05

IV. Course Content

Introduction to Java. Types. Control statements.

Classes and introduction to object-oriented programming. Class definition, fields, methods, constructors.

One and two-dimensional arrays.

Recursive functions.

Basic sorting and searching algorithms.

The use of the recursion in sorting algorithms.

Input operations with Scanner.

Enumeration type.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)
		KNOWLEDGE	
W_01	Conventional lecture /	Exam/Written test	Examination card /
	Guided practice		written test
W_02	Conventional lecture /	Exam/Written test	Examination card /
	Guided practice		written test
W_03	Conventional lecture /	Exam/Written test	Examination card /
	Guided practice		written test
W_04	Conventional lecture /	Exam/Written test	Examination card /
	Guided practice		written test
W_05	Conventional lecture /	Exam/Written test	Examination card /
	Guided practice		written test
W_06	Conventional lecture /	Exam/Written test	Examination card /
	Guided practice		written test
W_07	Conventional lecture /	Exam/Written test	Examination card /
	Guided practice		written test
		SKILLS	
U_01	Practical classes	Exam/Written test	Examination card /
	design thinking		written test
U_02	Practical classes	Exam/Written test	Examination card /
	design thinking		written test
U_03	Practical classes	Exam/Written test	Examination card /
	design thinking		written test
U_04	Practical classes	Exam/Written test	Examination card /
	design thinking		written test
U_05	Practical classes	Exam/Written test	Examination card /
	design thinking		written test
U_06	Practical classes	Exam/Written test	Examination card /
	design thinking		written test
U_07	Practical classes	Exam/Written test	Examination card /
	design thinking		written test
	SC	OCIAL COMPETENCIES	
K_01	Discussion, PBL (Problem-	Exam/Written test	Examination card /
	Based Learning)		written test
	design thinking		
K 02	Discussion, PBL (Problem-	Exam/Written test	Examination card /

Based Learning)	written test
design thinking	

VI. Grading criteria, weighting factors.....

To pass a course, the student has to attend a classes and has to pass the tests and the final exam.

- passing classes colloquia 90% of the final grade, student's activity and work during classes 10% of the final grade.
- written exam for people who have passed the classes. Detailed conditions of exemption are given to students with each course edition.

Detailed assessment rules are given to the students with each edition of the course.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	90
Number of hours of individual student work	60

VIII. Literature

Basic literature

Herbert Schildt, Java: The Complete Reference, Eleventh Edition, McGraw-Hill Education, 2018 Herbert Schildt, Java: A Beginner's Guide, Eighth Edition, McGraw-Hill Education, 2018

http://docs.oracle.com/javase/8/docs/

http://docs.oracle.com/javase/11/docs/

C. S. Horstmann, G. Cornell, Core Java Volume I – Fundamentals (10th Edition), Pearson Education, 2018

C. S. Horstmann, Java, Core Java, Volume II--Advanced Features, 11th Edition, Pearson Education, 2019

Additional literature

R. Sedgewick, K. Wayne, Algorithms, 4th ed., Addison-Wesley, Upper Saddle River, NJ, 2011.

N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall 1976