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BIOELECTRONIC ASPECT OF ENZYMATIC CATALYSIS
1. INTRODUCTION

Enzymes and their action have been the subject of extensive investigation for a
long time. Nevertheless, the full explanation and unified description of the mecha-
nisms underlying enzymatic catalysis as well as a satisfactory reconstruction of the
origin and evolution of enzymes are still lacking. Maybe this is caused by too limi-
ted knowledge of the phenomena taking place on the submolecular level of the or-
ganization of life. It seems that bioelectronics (e.g. 36-37, 39) may give some im-
portant insights to fill this gap. A few interesting concepts have been proposed in
this regard so far, e.g. the concepts of bioplasma and of the electromagnetic nature
of life.

The electronic model of the living system is intimately connected with the abo-
ve concepts, It ascribes an essenual significance of quantum electronic processes to
mechanisms that bring about the processes of life. This model 1s based on the re-
sults of the investigation of electronic properties of biological materials (e.g. semi-
conductivity, pyroelectricity) as well as on the so-called substrate-structure-fun-
ction (SSF) analogies from typical to solid state physics approach to biomaterials
(36 p.169).

The aim of this article is to review some results and concepts which may serve
as a basis to formulate a bioelectronic model of enzymatic catalysis. It seems that at
least heuristic analogies of the SSF-type between microelectronic and chemotronic
devices and enzymatic systems may be of vital importance to this model.

Electronic aspects of enzymatic processes have been a subject of only little inve-
stigation {e.g. 7, 22, 35) in the field of the whole enzymology. First of all, the
results of quantum-mechanical calculations of the electronic structure of some bio-
molecules have been taken into consideration, and the significance of the Coulomb-
-type interactions in processes involving enzymes has been emphasized. Here, how-
ever, the elecronic aspects will be understood in a broader sense.

2 THE SUBSTRATE-TYPE ANALOGIES

As far as the analogy of the substrate is concerned, the electronic conductivity
of biopolymers {34, 38) is of crucial significance. Such important enzyme as cyto-
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chrome oxidase has been proved to have the activation energy of semiconduction
as low as 0.26 eV. In connection with this, a semiconduction mechanism of the
action of this enzyme has been proposed (11-15, 20). This electronic property is
connected with the existence of free electronic charge carriers in biological systems,
and with long-range electron wransfer in protein structures (21, 31, 42).

The second essential feature of the analogy of the substrate is piezoelectricity
of many biological structures, including proteins {e.g. 26-28). With these results,
the piezoelectric model of photophosphorylation (8), and the piezoelectric theory
of enzymatic catalysis (9), and the quite recently proposed piezoelectric mecha-
nism for the active transport of charge in membranes (32) are coherent.

The high temperature superconductivity of some biostructures (e.g. 19, 29) is
another electronic property which has been taken into account. Namely, it has been
suggested that it is the superconductivity that may be responsible for the action of
enzymes (1-3). Yer, an attempt at experimental detection of high temperature su-
perconductivity in lysozyme was unsuccessful (10). What is more, it has been spe-
culated that relativistic superconductive plasma may exist in some biological struc-
tures {16-18) though only recently the syntheses of organic superconductors have
been carried out successfully (e.g. 41).

The electret state of many biological materials, including some enzymes, is the
fourth property of interest here. The biocelectret behaviour of trypsin, urease, and
ribonuclease has been found (33). In connexion with this feature, H. Frohlich pro-
posed a model in which the action of enzymes was explained on the basis of their
electric polarization (23-25). According to this model, the metastabile ferroelectric
state i an enzyme system is.induced by the interaction of the coherent long-range
polarization waves with the field of the elastic strain of the material forming this
enzyme. It is proved that enzymes are capable of the storage of the high electric
polarization. In Fréhlich’s opinion, the adsorption of an ion on a macromolecule
may give rise to the local field of the order of 10° V/in which may easily induce the
electret state in the enzyme. One can even speak about qelectric denaturation™ of
enzymes (33).

3. THE STRUCTURE-TYPE ANALOGIES

As far as the analogy of the structure between a biosystem and, for example, a
molecular electronic device (MED) (5) is concerned, it is evident in the structure
of sandwich-, and multilayer-types. Various concentrations of free electrons are
characteristic of these layers, therefore the p-n type junctions may be formed of
them. Surface proteins or the conducting surface layers created by the assemblies
of the polar head groups of amphiprotic membrane-forming molecules would form
a conductor /insulating barrier/ conductor sandwich similar to such technologically
important structures as MIM, MOS (30).

The electronic microenvironment of a given enzyme may differ considerably in
dependence on its orientation inside of the membrane or on the surface of it, or in
the water phase. [f the enzyme is deeply immersed in a lipophilic region of compa-
ratively low permittivity, it has therefore a slight chance to interact with polar mi-
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cromolecules, and is surrounded by a relatively stabile microenvironment created
by the specific molecular organization of the membrane. On the other hand, if the
soluble enzyme is surrounded by the hydrophilic environment of high dielectric
constant, various molecules may easily react with its surface groups.

A similar situation may be characteristic of the interior of the macromolecule
of an enzyme. For example; the amino acid residues possesing hvdrophobic side
chains are grouped on the one side of the active center of lysozyme, whereas the
residues with the derophllu, side chains = on the other one. Such a system gives
rise to the microenvironments of either low permittivity (hydrophobic residues) or
high one (hydrophilic residues). A similar arrangement may be found in the heme
center of cytochrome ¢ . Namely, it is surrounded by hydrophilic histidine, on the
one side, and by hydrophobic methionine in the other. It may be speculated that
the hydrophilic regions may take part in bringing about superconducting states,
and the hydrophobic ones — in semiconductivity,

In this context also liquid crystalline structures of biological membranes should
be mentioned (e.g. 4). This property is considered to be responsible for the mem-
brane permeability, the adsorption phenomena, and for the catalytic action of bio-
membrane surfaces.

4. THE FUNCTION-TYPE ANALQGIES

It is of great importance that one of the first molecular electronic devices unli-
zes enzyme fragments in a hybrid semiconductor-MED detector based on the field
effect transistor (6). It appears that finding the functional analogies is more diffi-
cult. To make this, one should show which role might be performed by e.g. p-n
junctions present in enzymatic systems, In the respect of energetics, these junctions
might play a role of detectors or emitters of electromagnetic radiation (e.g. act as
electroluminescence diodes), and even of generators of coherent radiation. The put-
ting forward of the an1logy of this type is justified by the observation of the reso-
nant influence of nonionizing radiation on some enzymes and of some features of
ultraweak luminescence accompanying the oxidative phosphor}'lanon.

3. CONCLUDING REMARKS

Also other types and examples of the analogies of SSF-type may be found, e.g
in the field of chemotronic devices, such as electrokinetic and mechanoelectrical
transducers. It seems, therefore, that all the analogies mentioned in the article creare
a sufficient basis to undertake an attempr at the formulation of the bioelectronic
model of enzymatic catalysis,

[t is not excluded that various electronic features of enzymes which gave rise to
some one-sided hypotheses and theories, as Cope’s semiconductor (11-15, 20), Ca-
serta and Cervigni’s piezoelectric {9), and the superconductivity hypothesis (1-3)
have a common denominator in the existence of the plasma state in biostructures.
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Following this line of reasoning, typical of bioelectronic approach to enzymatic ca-
talysis, it has been hypothesized (40) that electron-hole plasma in enzymes and

dipole plasma in the water phase may exist, and that the coupling of processes ta-

king place in these plasmas may be responsible for some crucial mechanisms of ca-
talysis.
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BIOELEKTRONICZNY ASPEKT KATALIZY ENZYMATYCZNE]

Streszczenie

Poznanie mechanizméw drislania enzymow jest jednym z kluczowych problemow vansdyscyplinarnych. Duzg
wartoié pornawezy ma badanie procesdw przebicgajycych na submulekularnym poziomie orgianivacii Zycia. Proble-
matyke 1¢ podejmuje bioclekironika, kiora kwantowym procesom elekironicznym praypisuje istame znaczenie w
mechanizmach fimkcjonowania réznotodnych zjawisk zycdowych.

W ninieiszym artykule przedstawiono probg wskazania mozliwosdl stworzenis bioelektronicznego modely ka-
talizy enzymatycznej, Posmlowano, ie u podstaw tego modelu powinny stal heurystyczne analogic substratowo-
strukturalno-funkejonalne pomigdzy vkladami enzymatycenymi's urzadzentami mikroclekronicanymi i chemotro-
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meznymi. Dokonano preeplydu odpowiednich danych vzasadhiafgeych ponickad istnicnie wymientonveh analogu
heurvstycenych w odnigsieniv do enzyméaw, Przy rozpatrywaniu analogi substrats omowiono hipotezy, wigigce
mechamzmy funkcjonowania enzyvmow 2 isiniemem piczoclekirycannicl, polprzewodniciwa elcktronowego bydz
nadprzewodnictwa wysokatemperaturowepo biostrubitur, Rozpatrujpe analogic strukiury zwrécono uwagg na mio-
dliwoid tworzenia sic w ukladach enzymatycznych elektronicznych zljez typu p-n, warstw sandwiczowych i struk-
wr gieklokrystalicznych. Wreszcie prey analogn funkep sugerowano, e zljeza p-n w ukladach enzymarycznveh
magy pelnié rolg detektora elekromagnetyeznego lub émitera promieniowania spojnego byd# funkepe diody elekiro-
luminescencyne). Wspomniano takze o hipotezie plazmowege mechanzmu kamtizy enzymarycene. Zgodnie z my.
istmgje plazma elekironowa czy elebtronowo-drivrowa w enzymach i plazma dipolowa lub jonowa w elekrrolicie
przy ich powicrzchniach omm #e spragzenie zjawisk waych plazmach moze byé odpowiedzialne za mechanizm
kamlizy. Wydaje sig, e rozwinigeie tef idel moie doprowadzi¢ do glebszego zrozumienia ejawisk Zvciowych 1 nilet
stotne znaczenie przy rekonstrubcpi ablogenezy w aspekaie elekwronicznym,

KRYSTYNA SZPANBRUKER

WPLYW WYBRANYCH PESTYCYDOW
NA WZROST 1 ROZWO] RZESY - LEMNA MINOR

Chemiczne srodki ochrony roslin, obok doraznych korzysei z punkwu widzenia
gospodarki czlowieka, stanowiy bardzo powazny problem skazenia $rodowiska
przyrodniczego (7, 8). W pierwszé] kolemosci ulega powolnej zmianie stan fizycz-
ny i sklad chemiczny gleby oraz pojawiajg si¢ zmiany w skladzie iloéciowym i ja-
kosciowym organizméw glebowych. Srodki te nie pozostaja tylko w miejscu ich
zastosowania. Podlegajg one licznym 1 réznorodnym mechanizmom transportu.
Duze ich ilosci trafiaja do wéd srédladowych stojacych i plyngeych (2, 3, 9, 11,
12, 13): bezposrednio z terendw poddawanych zabiegom w wyniku zmywania
przez wody opadowe i przez znoszenie ich przez wiatr, posrednio przez wsigkanie
do wad podziemnych (1) 1 dalej z tymi wodami do stawdw, jezior i rzek. Ponadto
duza ilo$¢ srodkow ochrony roslin dostaje si¢ do wod powierzchniowych takze
podczas mycia réznych urzgdzen stuzacych do ich rozprowadzania, ze scickami
przemysfowymi i komunalnymi, a takze wskutek bezposredniego stosowania nie-
ktorych pestycydow fosforoorganicznych do regulacji skladu jakosciowego zoo-
planktonu (4, 6).

W warunkach naturalnych szkodliwe dzialanie pestycydow, dostajzeych si¢ do
zbiornika wodnego jako substancji nieswoistych, polega przede wszystkim na dez-
organizacji proceséw samoregulacji poprzez hamowanie, obumieranie czy nadmier-



