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Abstract

Recent astronomical observations strongly indicate that the current Universe is
undergoing an accelerated phase of its expansion. If the Universe evolution is de-
scribed by the FRW model then the acceleration should by driven by some perfect
fluid substance violating the strong energy conditions. Hence the negative pressure
is required for the explanation of acceleration. While different candidates for such a
fluid termed dark energy are suggested, the simple candidates for dark energy in the
form of positive cosmological constant seems to be the best one. However there is
no simple physical interpretation of the Lambda term as a quantum vacuum energy
because of the fine tuning problem. We argue in the paper that the LCDM model
as well as the CDM one has status of effective theory only. The paper is concerned
with the significance of this approach to the description of the Universe. Especially
we study the methodological status of the cosmological models from the point of view
of the debate on reductionism end emergence in the science. We pointed out that
modern effective cosmological theories may provide an interesting case study in the
current philosophical discussion. We also advocated that notion of structural stability
may by useful in our understanding of the relations of the emergence and reduction
between cosmological models. The structural stability of the LCDM model can be
interpreted as a property of flexibility of the model to accommodate the observational
data. Therefore one can explain why the LCDM model is the best one in confrontation
of dark energy cosmology with observations.

1 Introduction

Recent astronomical observations of distant supernovas SNIa type strongly indicate that
the current Universe is undergoing an accelerated phase of expansion [1, 2, 3, 4, 5, 6].
If the Universe evolution is described by homogeneous and isotropic models filled with
perfect fluid then the acceleration should by driven by a perfect fluid violating the strong
energy condition. While different candidates for such a fluid termed dark energy are

∗e-mail: uoszydlo@cyf-kr.edu.pl
†e-mail: xpt76@poczta.fm

1



suggested, the simple candidates for the dark energy in the form of positive cosmological
constant seems to be the best one [7, 8]. While the Lambda CDM model is a good
phenomenological description of the acceleration phase of the expansion of the Universe
there is serious problem with the interpretation of the Lambda term as a quantum vacuum
energy because of the fine tuning problem [9, 10]. We argue that while the LCDM has
the status of an effective theory which offers description of the observational facts (rather
than their explanation) this theory introduce principally the new theoretical element which
plays the role of an effective parameter changing dramatically the dynamics.

The theory which is called an effective theory (although it is not yet a technical notion)
is characterized by a few important features:

• An effective theory works in a certain field of physics. In most cases this scope of
application is described in terms of energy or distance scale. The theory which is
”effective” in a specific physical regime describes ”behavior” of elaborated objects
but often does not explain the nature of them. For example the standard model is
the effective theory of gluons and quarks in the distant scale of 10−17 m. Intuitively
that feature of effective theories was described by H. Georgi [11]:

(...)We can divide up parameter space of the world into different re-
gions, in each of which there is a different appropriate description of the im-
portant physics. Such an appropriate description of the important physics
is an ”effective theory”. The two key words here are appropriate and
important.

The word ”important” is key because the physical processes that are
relevant differ from one place in parameter space to another. The word
”appropriate” is key because there is no single description of physics that
is useful everywhere in parameter space [11].

• Every effective theory uses parameters which can be called ”informational input”
being assigned to the theory without explanations; i.e. we do not have to understand
the nature of these input parameters as to successfully operate the theory. It is
important to distinguish input parameters from any kind of information being used
by the theory or model (initial conditions for example ). Specific parameters do
have the status of input parameters only in the frame of the effective theory1. Their
values can be determined experimentally but only the more fundamental theory in
fact provide explanation for them being like that.

• Therefore, we can say for example that the nucleus spin, the elementary charge or
the magnetic property are input parameters for the effective theory which uses them
successfully but without understanding nature of them. The effective theories can
be put into specific series with respect to the input parameters. This is called by
some philosophers of science a tower of effective theories [13].

• We have written that an effective theory could be used in a certain area of physics.
Indeed this kind of theory works successfully (”effectively”) on that level but it breaks

1”For instance, temperature is an example of a feature that is relevant in thermodynamics but irrelevant
in Newtonian or statistical mechanics. Light rays are relevant in geometric optics, but they are irrelevant
in Maxwell’s electrodynamics. The chirality of molecules is relevant in physical chemistry , but it is
irrelevant in a Schrödinger-type quantum mechanical description. Nevertheless, there are strategies for
implementing the context due to which temperature is relevant in thermodynamics, due to which rays
are relevant in geometric optics, a due to which chirality is relevant in physical chemistry, at the level of
statistical mechanics, of electrodynamics, and of quantum mechanics respectively”. [12, p.1760]
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down when we exceed the limits of its application. The very important feature of
that limited applicability criterium is that these regimes have to be easily separated.

• The effective theories coexist with each other. Let’s consider two cases. We presented
in Table I a few examples of coexisting (but independent) different dark energy
models. In this case one can speak of sets of models. If two or more theories
or models are used to solve current physical problem (for example the problem of
accelerating Universe) we can evaluate their effectiveness by pointing out what type
of knowledge they provide. It is also possible to explain relations between effective
theories in terms of structures. An effective theory is not a fundamental theory. We
called that kind of structure of effective theories – the series or tower of theories.
It is possible because the theories of that kind not only coexist with each other
(but not in the same regime) but also condition each other. The theory on the
lower level determines some parameters for the theory of upper one. That kind
of relation can be elaborated by using the notions of emergence or supervenience
2. If we study that series of the effective theories we can meet the problem of a
fundamental theory, a base–theory. This final theory actually ends that series in the
terms of a methodological reconstruction, but at the same time begins the series in
the framework of emergence. One can speculate about the possibility of existence
of the fundamental theory, but there are also opinions that searching for the series
of effective theories leads to theoretical view described by expression: never-ending
tower of effective theories [13].

We study methodological status of the concordance cosmological LCDM model from
the view point of the debate on reductionism and emergence in science [14, 15]. Our
main result is that structural stability notion taken from the dynamical system theory
may be useful in our understanding of the emergence CDM to LCDM model as well as
in understanding of the reduction LCDM to CDM one. We argue that the concepts of
structural stability might be a suitable setup for the philosophy of cosmology discussion.

The LCDM model should be treated in our opinion as an effective theory for the
following reasons:

1. Theory of gravity which describe the gravitational sector of cosmology is very com-
plicated but if we postulate some simplified assumption like symmetry assumption
idealization then we obtain simplest model which can be representing in the form of
the dynamical system. In the cosmology assumption of homogeneity and isotropy
of space like sections of constant cosmic time (t = const) seems to be justified by
the distribution of large scale structure of astronomical objects (cosmological prin-
ciple). If we assume that the topology of spacetime is R × M3, where M3 is a
maximally symmetric 3-dimensional space then we obtain a geometrical structure of
the spacetime modulo a single function of a(t) called the scale factor. In order if we
postulate that source of gravity is in the form of perfect fluid with energy density
̺(t) and pressure p(t) then Einstein field equation reduces to the ordinary system
of differential equation determining a single function a(t). These equations called
Friedmann equations FRW model describe the evolution of the Universe at the large

2Supervenience is the most important concept which appears in every discussion about emergence. In
our opinion supervenience is a stronger relation than emergence, because it is synchronic in principle. It
means that using supervenience notion it is possible to characterize consecutive emerged levels connected
with each other, but without describing the very process of emerging the specific level form the more
fundamental one. It can be seen as the defect of the theory, but it (the theory) simply does not aspire to
explaining these mechanisms.
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scale. Of course this model is very simplified but it can be very useful instrument
of construction of a new effective theory of the Universe (heuristic function of the
model). Recently many authors (see [16, 17]) argue that observational cosmology
will change significantly the essence of our world-view.

2. Basing on this simple toy model one can effectively derive observables (for example
cosmological tests) which can be used in testing theory itself (function of testing
the theory). Note that this is impossible basing on general relativity without the
symmetry assumption where there is universal time conception.

3. The general acceptance of LCDM as the working is good strategy [18, 19] but one
may also seek alternative physics (pragmatism). After many years of hypotheses
and markets of models we have standard cosmological models which is leading as to
joint the physical model of the World.

2 Structural stability issues

Einstein field equations constitute in general very complicated system of partial nonlinear
differential equations but in the cosmology important role plays its solutions with some
symmetry assumptions postulated at the very beginning. Usually the symmetry of homo-
geneity and homogeneity and isotropy is assumed. In this case Einstein field equations
can be reduced to the system of ordinary differential equations, i.e. dynamical systems.
Hence to the cosmology could be applied the dynamical system methods in natural way.
The application of these methods allows to reveal some stability properties of particular
visualized in geometrical way as a trajectories in the phase space. Hence one can see how
large is the class of solutions leading to the desired property in tools of the attractors and
the inset of limit set (an attractor is a limit set with an open inset – all the initial condi-
tions that end up in the some equilibrium state). The attractors are the most prominent
experimentally. It is because the probability of an initial state of the experiment to evolve
asymptotically to the limit set it is proportional to the volume of inset.

The idea, now called structural stability emerged early in the history of dynamics inves-
tigation in 1930’s the writings of Andronov, Leontovich and Pontryagin in Russia (1934)
[20] (the authors don’t use the name structural stability but rather the name ”roughly sys-
tems”). This idea is based on the observation that an actual state of the system can never
be specified exactly and application of the dynamical systems might be useful anyway if
it can describe the features of the phase portrait that persist when the state of the system
is allowed to move around (see [21] for more comments).

Among all dynamicists there is shared prejudice that:

1. There is a class of phase portraits that are far simpler than arbitrary ones which can
explain why a considerable portion of the mathematical physics has been dominated
by the search for the generic properties. The exceptional case should not arise very
often in application and they de facto interrupt discussion (classification) [21, p.349].

2. The physically realistic models of the world should possess some kind of the struc-
tural stability because to have many dramatically different models all agreeing with
observation would be fatal for the empirical method of science [22, 23] (see also
[24, 25, 26, 27, 28].

These prejudice in the Holton terminology can be treated as a thematic principles [29,
30]. In the cosmology a property (for example acceleration) is believed to be ”physically
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realistic” if it can be attributed the generic subsets of the models within a space of all
admissible solutions or if it possesses a certain stability, i.e. if it is shared by a ”epsilon
perturbed model”. For example G. F. R. Ellis [31] to formulate so called a probability
principle ”The Universe model should be one that is a probable model within the set of
all universe models” and a stability assumption which states that ”the Universe should be
stable to the perturbations”. The problem is how to define:

1. the space of state and its equivalence,

2. the perturbation of the system.

The dynamical system is called structurally stable if all δ-perturbation of it (sufficiently
small) have the epsilon equivalent phase portrait. Therefore for the conception of struc-
tural stability we considered a δ-perturbation of vector field determined by the right-hand
sides of the system which is small (measured by delta). We also need a conception of the
the epsilon equivalence. This has the form of topological equivalence–a homeomorphism
of the state space preserving the arrow of time on each trajectory. In the definition of
structural stability considered only the deformation of ”rubber sheet” type stretches or
slides the phase space a small amount measured by epsilon.

There are developed other concepts of stability used by some authors [32, 33]. For
example concepts of rigidity and fragility is used in the sense that the attractor solutions
never change as long as some conditions are met. In the structural stability conception the
global dynamics is important rather than the fragility of solutions against changes in the
shape of a functional form of the Hubble function. It is also used the concept of rigidity in
the context of a final theory of physics (TOE). Roughly speaking a mathematical structure
is said to be rigid, with respect to a certain deformation parameter, if its every deformation
with respect to this parameter yields again the same structure [34, 35] (see also [36]). It is
interesting that while the deformation parameter is not defined uniquely, the deformation
procedure can be strictly defined. The main advantage of the structural stability is that
it is the characterization of global dynamics itself.

Fig. 1 illustrates the property of structural stability of single spiral attractor (focus)
and saddle point and structural instability of center. The addition of a delta perturbation
pointing outward (no matter how weak) results in a point repeller. We call such a system
structurally unstable because the phase portrait of the center and focus are not topolog-
ically equivalent (note that all phase curves around the center are closed in contrast to
the focus. Hence one can claim that a pendulum system (without friction) is structurally
unstable.

Idea of structural stability attempts to define the notion of stability of differential de-
terministic models of the physical processes. In the case of planar dynamical systems (as
in the case of models under consideration) there is true Peixoto theorem (Peixoto 1982)
[37] which states that structurally stable dynamical systems form open and dense subsets
in the space of all dynamical systems defined on the compact manifold. This theorem
is basic characterization of structurally stable dynamical systems in the plane which of-
fers the possibility of exact definition generic (typical) and nongeneric (exceptional) cases
(properties) in tools of the notion of structural stability. Unfortunately there is no coun-
terparts of this theorem in more dimensional case when structurally unstable systems can
also form open and dense subsets. For our aims, it is important that Peixoto theorem can
give the characterization of generic cosmological models in terms of potential function V of
the scale factor a which determine the motion of the system of Newtonian type: ä = −∂V

∂a
.

Therefore we can treat FRW equation with various forms of dark energy as the two-
dynamical systems which looks like Newtonian type where the role of coordinate variable
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Figure 1: The schematic illustration of a) structural stability of dynamical system under
perturbation; b) structural instability of a center; c) structural stability of a saddle.
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is played by the cosmological radius (or redshift z: 1 + z = a0
a

≡ x−1). We can construct
an effective potential, the second order acceleration equation has exactly the Newtonian
form, where the role of a coordinate variable is played by the cosmological radius.

Using the notion of the structural stability introduced first by Andronov, Leontovich
and Pontryagin in thirties, one can classify different models of cosmic acceleration. In will
be demonstrated that models with the accelerating phase which follows the deceleration
are natural and typical from the point of view of the dynamical systems theory combined
with the notion of structural stability in contrast to the models with bounces. In Fig. 2
there are illustrated two cases: a) inverted single-well potential and b) more complicated
form of the potential with two maxima corresponding to the saddle point and minimum
corresponding to the center (structurally unstable).

Let us introduce the following definition:

Definition 1 If the set of all vector fields f ∈ Cr(M) (r ≥ 1) having a certain property
contains an open dense subset of Cr(M), then the property is called generic.

From the physical point of view it is interesting to know whether certain subset v of
Cr(M) (representing a class of cosmological accelerating models in our case) contains a
dense subset because it means that this property (acceleration) is typical in V (see Fig.1).

It is not difficult to establish some simple relation between the geometry of potential
function and the localization of critical points and its character for the case of dynamical
systems of Newtonian type:

1. The critical point of the system under consideration ẋ = y, y = −∂V
∂x

lies always on
x-axis, i.e. they are representing static universe y0 = 0, x = x0;

2. The point (x0, 0) is a critical point of the Newtonian system if it is a critical point
of the potential function V (x), i.e. V (x) = E (E is total energy of the system

E = y2

2 + V (x); E = 0 for the case flat models and E = −k
2 in general);

3. If (x0, 0) is a strict local maximum of V (x), it is a saddle type critical point;

4. If (x0, 0) is a strict local minimum of the analytic function V (x), it is a center;

5. If (x0, 0) is a horizontal inflection point of the V (x), it is a cusp.

Therefore the geometry of potential function will determine the critical points as well
as its stability. The integral of energy defines the algebraic curves in the phase space (x, y)
which are representing the evolution of the system with time. In any case the eigenvalues
of the linearization matrix satisfy the characteristic equation λ2 + ∂2V

∂x2 |x=x0 = 0.

3 Cosmological models as dynamical systems

The cosmology is based on the Einstein field equation which represents a very complicated
system of partial nonlinear differential equation. Fortunately, the majority of main class
of cosmological models from the point of view of observational data, belong to the class of
the spatially homogeneous ones, for which has sense the absolute cosmological time. As
a consequence, the evolution of such models can be reduced to the systems of ordinary
differential equations. Hence to the cosmology could be naturally applied the methods of
dynamical system theory or qualitative theory of differential equation. Among these class
of models especially interesting are the cosmological models with maximally symmetric
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space sections, i.e. homogeneous and isotropic. They are called FRW models (Friedmann-
Robertson-Walker) if source of the gravity is a perfect fluid described in terms of energy
density ̺ and pressure p, both are the functions of cosmological time t. The FRW dynamics
is described by two basic equations:

ä = −1

6
(̺ + 3p)a = −∂V

∂a
(1)

˙̺ = −3H(̺ + p); , (2)

where the potential V = −1
6̺a2, a is the scale factor and H = d ln a/dt is Hubble’s

function, a overdot means the differentiation with respect to the cosmological time t.
The first equation is a consequence of the Einstein equations for the component (1,1),

(2,2), (3,3) and the energy momentum tensor T µ
ν = diag | − ̺, p, p, p|. This equation is

called the Raychaudhuri or acceleration equation. The second equation represents the
conservation condition T µ

ν;µ = 0. It is very strange and unreasonable that such two simple
equations satisfactorily describe the Universe evolution at the large scales. Of course there
is a more general class of cosmological models called the Bianchi models which has only the
symmetry of homogeneity but they do not describe the current Universe which is isotropic
as indicated measurement of the cosmic microwave background (CMB)radiation.

The system of equations (1) and (2) admit the first integral called the Friedmann
equation

̺ − 3H2 = 3
k

a2
, (3)

where k is curvature constant (0,±1) and ̺ plays the role of effective energy density.
If we consider the Lambda CDM model then

̺eff = ̺m,0a
−3 + Λ, (4)

i.e. energy density is a sum of dust matter (cold) and dark energy. Therefore the potential
function for the flat FRW model assumes the following form:

V = −̺effa2

6
= (−){̺m,0a

−1 + Λa2}; (5)

or in terms of redshift

V (z) = −1

6
{̺m,0(1 + z) + Λ(1 + z)−1}

Formally the curvature effects as well as the cosmological constant term can be incor-
porated into the effective energy density (̺k = − k

a2 ; ̺Λ = Λ; pΛ = −Λ).
To represent the evolutional paths of cosmological models in this form is popular since

Peebles’ monography [38] (see also [39] and modern applications [40, 41, 42] and references
therein).

The form of equation (1) suggests the possible interpretation evolutional paths of
cosmological models as a motion of a fictitious particle of unit mass in a one-dimensional
potential parameterized by the scale factor. Following this interpretation the Universe is
accelerating in the domain of configuration space {a : a ≥ 0} in which the potential is
a decreasing function of the scale factor. In the opposite case if potential is a growing
function of a the Universe is decelerating. The limit case of zero acceleration corresponds
to an extremum of the potential function.

It is useful to represent evolution of the systems in terms of the dimensionless density
parameter Ωi ≡ ̺i

3H2
0
, where H0 is present value of Hubble’s function. For this aim it is
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sufficient to introduce the dimensionless scale factor x ≡ a
a0

which measures the value of a
in the units of the present value a0 (which we choose) and reparameterize the cosmological
time following rule t 7−→ τ : dt|H0| = dτ . Hence we obtain a 2-dimensional dynamical
system describing the evolution of cosmological models:

dx

dτ
= y

dy

dτ
= (−)

∂V

∂x
(6)

and
y2

2
+ V (x) =

1

2
Ωk,0, 1 + z = x−1

where

V (x) = −1

2
{Ωeffx2 + Ωk,0 + ΩCard,0x

m+2};

z is redshift;
Ωeff = Ωm,0x

−3 + Ωx,0x
−3(1+wx)

for dust matter and quintessence matter satisfying the equation of state px = wx̺x,
wx = const.

The form (6) of the dynamical system opens the possibility of adopting dynamical sys-
tem methods in investigations of all possible evolutional scenarios for all possible initial
conditions. Theoretical research in this area obviously shift from founding and analyzing
particular cosmological solution to investigating a space of all admissible solutions and dis-
covering how certain properties (like acceleration, existence of singularities for example)
are ”distributed” in this space. The system (6) is Hamiltonian one and adopting Hamilto-
nian formalism into the admissible motion seems to be natural. This gives at once insight
into dynamics of accelerating Universe because our problem is similar to the problems of
classical mechanics. It is achieved due to particle like description of accelerating cosmol-
ogy. This cosmology identifies the unique form of the potential function V (x). Different
potential functions for different propositions of solving the acceleration problem contains
Table 1.

4 Emergence of the LCDM model from the CDM model in

the framework of structural stability

Before we start more accurate analysis concerning postulated emergence occurrence be-
tween the LCDM and CDM models we first put it into a more general perspective. In spite
of many problems concerning theoretical weakness, the relation of emergence is becoming
more and more popular. It appears to be applicable not only in biological sciences, but
also in mathematics, quantum mechanics, chaos theory, physical chemistry or the philos-
ophy of mind. The problems and controversies with formulation a coherent conception of
emergence concern in principle a few areas susceptible to critics. Firstly, in discussion with
reductionism and physicalism, emergence reveals weakness in the explanation of its mech-
anism: how do the new levels of structures emerge. We often do not know how emergence
works or if the emergent theory explains at all. Secondly, there are many candidates for
the unit of emergence. Is it a structure, information, law, property or process, event, new
effect maybe? It appears that on every level of organization, where we notice existence of
emergent properties, we need the new theoretical instruments. Thirdly, variety of emer-
gences makes difficulty with elaborating of its unifying theory. It should be noticed that
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Table 1: The potential function for different dark energy models
model potential function independent

parameters

Einstein – De Sitter model
Ωm,0 = 1, ΩΛ,0 = 0 V (x) = −1

2Ωm,0x
−1 H0

Ωk,0 = 0

ΛCDM model V (x) = −1
2{Ωm,0x

−1 + ΩΛ,0x
2} (Ωm,0, H0)

Ωm,0 + ΩΛ,0 = 1

FRW model filled with V (x) = −1
2{Ωm,0x

−1 + Ωk,0+ (Ωm,0, H0

noninteracting multifluids +
∑n

i=1 Ωi,0x
−3(1+wi)} ΩΛ,0,Ωi,0)

p = wi̺i with dust,
matter and curvature

FRW quintessence model V (x) = −1
2{Ωm,0x

−1 + Ωk,0+ (Ωm,0, H0, Ωx,0)
with dust and dark matter x +Ωx,0x

−1−3wx} Ωk,0 = 1 − Ωm,0

px = wx̺x, wx = const wx < −1 phantom models −Ωx,0

FRW model with baryonic matter V (x) = −1
2{Ωm,0x

−1 + Ωk,0+ (Ωm,0, H0, ΩChapl,0)

generalized Chaplygin +ΩChapl,0(As + 1−As

x3(1+α) )
1

1+α }
gas [4] p = − A

̺α , A > 0

the very notion of emergence evolutes and applicated to physics shows quite different faces.
We suggest that while having philosophical flavour, emergence notion should be treated
with the great caution. A special attention should be paid to which or whose version of
emergence we use (Broad’s, Humphrey’s or Kim’s notion of emergence for instance) [43].

The sense of emergence notion is described usually in terms of the distinction between
epistemology and ontology. It will be shown that this kind of theoretical framework is
not sufficient. While describing emergence it is often useful to apply to it two important
predicates: interacting or actualizing (emergence). An interacting emergence means that
the new feature of the system can be explained on the basis of relation (interaction)
between elements of this system. Actualization in emergence concerns particular properties
existing in parts of the whole. While speaking of emergence, first association points at
novelty. It should be asked in the most general way: what does the novelty consist in? Kim
suggests that the novelty occurs in the two different ways: when something (property for
example) is unpredictable or because of causal powers which can be detected in the relation
between parts and wholes [44]. On the other side, novelty is such an unclear concept that
it is obviously not good criterion for establishing the levels of empirically examined reality.
Epistemology gives maybe better tools for finding appropriate description of the emergence
mechanism, when we recognize the nature of the laws (biological, chemical, physical) which
determine the properties of the specific level. Shortly, the quality of the language used
in description of it determines something like detector of the appropriate stratum of the
universum. The meta-theoretical framework of our paper can be expressed in a few items:

• In this paper we focus not only on the emergence existing in the description of
properties (epistemological version)3, but also on the methodological implications
which concern the explanatory power of two coexisting ways of description (the
CDM and LCDM models).

3”The description of properties at a particular level of description offers necessary but not sufficient
conditions to derive the descriptions of properties at a higher level.” [12, p.1757]
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• We prefer using the expression the ways (or methods) of description instead of the
levels of description because we are going to achieve a specific goal—quite risky
one: we want to show that it is possible to speak of the relation of emergence which
occurs between two models on the same level of description. There is a hierarchy
of description, as suggested by Bishop and Atmanspacher, but that hierarchy has
two important features: 1. it is diachronical—the LCDM model does not supervene
on the CDM model; 2. it is strongly conditioned on observational data and thus
determined by the current state of scientific knowledge.

• Although Popper has not elaborated clear and coherent conception of emergence [?],
in our opinion it is possible to use his scheme of the growth of knowledge to explain
that kind of emergence we are dealing with:

P1(problem) → TT (tentative theory) → EE(error ellimination) → P2(different problem)

Emergence occurs when the theory collaborates with the observational data and it
concerns not only the new problems (the emergence of problems) but also the change
of theory itself. Hajduk has shown that one can go beyond the philosophy of K. R.
Popper and generalize this scheme as to formulate a more accurate model of theory
dynamics [45]:

BT -�
��

@@R
EE

TEP

TRP

- P1
- TT1

-�
��

@@R
EE

TEP

TRP

- P2
- TT2

-�
��

@@R
EE

TEP

TRP

-P1 − Pn
-T1 − Tn

-�
��

@@R
EE

TEP

TRP

...

Where TEP – the explanatory power of the theory (it makes the theory deals with
known problems); TRP – the resolving power of the theory (it contributes to new
problems arising); P1 − Pn – new problems with radically preformulated versions of
the old ones; T1 − Tn – the new theories being applied to P1 − Pn.

The dynamical system investigation of the solutions of differential equations shifts key
point from founding and analyzing of individual solutions to investigating the space of
all solutions for all admissible initial conditions, in the geometrical language of the phase
space. Certain property (such as acceleration, singularities etc.) is believed to be realistic
if it can be attributed to a large subset of models within the space of all solutions [25].
The evolutional scenarios are represented by the phase curves or by critical points, limit
circles or the other limit sets. We say that two dynamical systems (or equivalently vector
fields), say f(x) and g(x)) if there is an orientation preserving homeomorphism sending
integral curves of f into those of g. Of course this equivalence relation divided space of all
dynamical systems on the plane on disjoint class of abstraction. Let phase space E = Rn,
then ǫ - perturbation f is the function g ∈ C1(M) satisfying ‖f−g‖1 < ǫ; where M is open
subset of Rn and ‖...‖1 is C1 norm form the Banach space. In the introduced language it is
natural to formulate an idea of structural stability. The intuition is very simple, namely f
is structurally stable vector field if for any vector field f and g are topologically equivalent.
Then one can define the property of structural stability of the system.

Definition 2 A vector field f ∈ C1(M) is called to be structurally stable if there is an
ǫ > 0 such that for all g ∈ C1(M) with ‖f − g‖1 < ǫ, f and g are topologically equivalent
on open subset Rn called M.
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The 2-dimensional case is distinguished by the fact that the Peixoto theorem (1962)
gave a complete characterization of structurally stable systems on any compact, two di-
mensional space asserts that they are generic, i.e. forms open and dense subsets in the
space of all dynamical system on the plane [37].

While there are no counterpart to the Peixoto theorem in higher dimension it can be
easy used to test whether such dynamical systems or cosmological origin has a structurally
stable global phase portrait. In particular, a vector field on the Poincaré sphere will be
structurally unstable if there are non-hyperbolic critical points at infinity on the equator
of the Poincaré sphere. In the opposite case if additionally the number of critical points
and limit cycles is finite f is structurally stable on S2.

In this section we will prove that the CDM model is structurally unstable (therefore
exceptional in the space of all dynamical systems on the plane) and it transition (which
we called emergence) to the Lambda CDM model means perturbation of the CDM system
such that new perturbed system is structurally stable (therefore generic). Moreover the
LCDM system can be treated as abstract of equivalence principle (therefore representative
case) introduced in the class of accelerating cosmological models. In other words all global
phase portrait equivalent to LCDM cosmological models or the potential diffeomorphic to
the inverted single well potential. We assume that class of the FRW dynamical systems
with the dark energy can be described in terms of the single potential function of the scale
factor or redshift. If dark energy is described in terms of the coefficient of the equation of
state wX(z) = pX

̺X
then the above assumption is always satisfied.

Let us rewrite the acceleration equation (1) in the new variable z : 1 + z = a−1. Then
we obtain

z̈ = 2(1 + z)−1ż2 +
1

6
̺(1 + 3w(z))(1 + z). (7)

The equation (7) represents a special case of a more general type of the equations

z̈ = f(z)ż2 + g(z). (8)

For such a type of equations one can always eliminate the term f(z)ż2 by the repa-
rameterization of the original time variable t, . ≡ d

dt
, namely

t 7−→ τ :
dt

dτ
= h(z),

′ ≡ d

dτ
. (9)

For this aim it is sufficient to choose

h(z) = exp(−
∫ z

f(z) dz). (10)

Then we rewrite the equation (7) to the new form

z
′′

= g(z) exp{(−2)

∫ z

f(z) dz} ≡ (−)
∂V

∂z
. (11)

The equation (11) represents the evolution of the FRW dynamical system with dark energy.
The potential function is given by the formula

V (z) = −
∫ z

e(−2)
R

z
f(z) dz g(z) dz. (12)

In the case considered f(z) and g(z) are determined by (7) and the potential function
reduces to the form

V (z) = −1

6

∫

̺(1 + 3w(z))

(1 + z)3
dz, (13)

12



where ̺ plays the role of the effective energy density.
It is easily to check that the above formula can be exactly integrated by part if we

assume that ̺ satisfies the adiabatic condition (2). The final result is:

V (z) = −1

6

̺

(1 + z)2
(14)

and z
′′

= −∂V
∂z

, i.e. dynamics of the FRW model with dark energy reduces to the 2-
dimensional dynamical system of a Newtonian type. The above equation has very simple
interpretation as the motion of a particle of the unit mass in the potential well. During
the motion of the system the total energy is preserved, i.e.

z
′2

2
+ V (z) = E = const, (15)

where E = −k
2 .

The Lagrangian of the fictitious particle which mimics the evolution of the cosmological
model has the form

L =
1

2
(z

′

)2 − V (z),

where dt
dτ

≡ h(z) = (1 + z)−4 or

L =
1

2M−1(z)
(
dz

dt
)2 − V (z), (16)

where M(z) = (1 + z)4.
The form of Lagrangian is natural, therefore Hamiltonian assumes the following form:

H =
1

2M(z)
p2

z + Ṽ (z), (17)

where pz is momentum conjugated with the positional variable z, R′2 = −1
2Ωk,0−Ṽ (z) ≥ 0

is domain admissible for the motion. It is convenient to rewrite it using dimensionless
variables of the density parameters instead of the energy density ̺i.

For this aim it is sufficient to reparameterize the time variable

t 7−→ |H0|τ = σ, (18)

where H0 is the present value of the Hubble’s function.
Finally we obtain the Hamiltonian formulation of the dynamics of the FRW model

with dark energy.

H 7−→ H̃ =
1

2M
(

dz

|H0| dt
)2 + Ṽ (z) =

1

2M
(
dz

dσ
)2 + Ṽ (z), (19)

where

Ṽ (z) = (−)
1

2
Ωeff(1 + z)−2, E =

1

2
Ωk,0.

In the special cases of the CDM and LCDM models the potential function is in the
form

Ṽ (z) = −1

2
Ωm,0(1 + z) (20)

13



ȧ
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Figure 2: The phase portrait for the perturbed potential V (x) on the phase plane (x, x′)
at the finite domain. Here redshift z = x−1 − 1.

for CDM model where Ωm,0 = 1 if Ωk,0 = 0 (flat model), and

Ṽ (z) = (−)
1

2
{Ωm,0(1 + z) + ΩΛ,0(1 + z)−2}, (21)

for the LCDM model.
All density parameters are not independent and satisfy constraints conditions as a

consequence of the conservation energy integral H̃ = E = −Ωk,0

∑

i

Ωi,0 + Ωk,0 = 1, (22)

where we apply z = 0 or that

Ṽ (z = 0) +
1

2
= Ωk,0.

The potential (21) can be treated as a perturbation of potential (20) which is man-
ifested for redshift z < ztrans. The phase portrait for the LCDM model as well as its
potential V (x) illustrates Fig. 2. The saddle point in the phase portrait corresponds to
a maximum of the potential function. The universe is decelerating for x < x(ztrans) and
accelerating in the domain x > x(ztrans).

Let us define some class of the perturbed CDM models. Such a class can be defined
in terms of the perturbed system of a Newtonian form.

Definition 3 By the perturbed CDM model we understand 2-dimensional dynamical sys-
tem of a Newtonian form ä = −∂V

∂a
(or z

′′
= −∂V

∂z
) with the potential function

V = VCDM − 1

6

∑

0,±1,±2

̺i,0a
−i+2 = VCDM + Vpert, (23)
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Table 2: Different perturbations of the CDM model

i interpretation

0 cosmological constant
1 2D topological defects p = −2

3̺
-1 phantoms p = −4

3̺
-2 superphantoms p = −5

3̺
2 1D topological defects p = −1

3̺

where VCDM = −1
2Ωm,0x

−1, Ωm,0 = 1, 1 + z = x−1.

Table 2 contains physical interpretation of perturbation which corresponds to addi-
tional fluid contents. For different perturbation types considered only the first one (the
cosmological constant) gives rise to the structural stable system.

It is the interesting question whether the global dynamics of the CDM model is struc-
turally stable under a perturbation term. The global structure of dynamics (phase por-
traits) depends on the geometry of potential function because its localization as well as
character depends on the first and the second derivatives of potential function (∂V

∂x
)x=x0 =

0, λ2 + (∂2V
∂x2 )x0 = 0 respectively, where λ1,2 are eigenvalues of the linearization matrix of

the system and are a solution of the characteristic equation λ2 − tr Aλ + detA = 0.
We reduce the dynamics to the 2-dimensional system in the form

ẋ = y

ẏ = −∂V

∂x

( or z′ = y; y′ = −∂V
∂z

), where y2

2 + V (x) = E = −1
2Ωk,0 = const is the constant of energy.

From the above equation one can be seen that all critical points (right-hand sides of
the system are vanishing) are situated on the axis x (y = 0). From the characteristic
equation we obtain that for the dynamical system under consideration only three types of
critical points are admissible:

1. saddle if x0 : (∂V
∂x

)x0 = 0 and (∂2V
∂x2 )x=x0 < 0;

2. focus if (∂2V
∂x2 )x=x0 > 0;

3. degenerated critical point if (∂2V
∂x2 )x=x0 = 0.

Therefore in the first case the eigenvalues are real of opposite signs, and in the second
one they are purely imaginary. Because the center and degenerated (non-hyperbolic)
critical points are structurally unstable only in the presence of single saddle point to
guarantee the structural stability of the system at finite domain. The critical points x0 of
the perturbed system satisfy the condition

Ωm,0 =
∑

0,±1,±2

Ωi,0(2 − i)x3−i
0 .

Therefore at least there is only present such a single critical point.
Because the second derivative of the potential function is always upper convex, i.e.,

(∂2Ṽ
∂a2 ) < 0 and critical point if exists is saddle type. If we consider only Lambda term in
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Figure 3: The phase portraits for different perturbations of the CDM model – from the
left side: 1) the LCDM model with the positive cosmological constant, 2) the LCDM
model with the negative cosmological constant, 3) the CDM model with the vanishing
cosmological constant. Note that only the systems with the cosmological constant are
structurally stable while the CDM model is unstable because of the presence of degenerated
critical points at the circle at infinity (case 3). The right figure represents the Einstein
static universe (x, ẋ) = (∞, 0). The critical point (0,∞) represents the big-bang singularity
(an unstable node).

the perturbation (i.e. the LCDM model) then other terms do not change the global phase
portraits of the LCDM system or all perturbed systems are topologically equivalent. The
relation of global dynamics on the phase plane is the equivalence relation, therefore the
LCDM model can be treated as a representative model in this class.

After the introducing the projective map covering a circle at infinity (x, y) 7→ (v,w) : v =
1
y
, w = x

y
one can check that the system admits the critical point (v0 = 0, w0 = 0) which

corresponds to ẋ = ∞ and 1
H

= 0 (or H = −∞), i.e., the big-rip singularity. This crit-
ical point is degenerate, therefore the whole system is structurally unstable. The phase
portraits of the CDM model and the LCDM models with an adjoint circle at infinity
x2 + ẋ2 = ∞ are shown in Fig. 34.

Note that if we consider oscillatory universes with evolution describing by the center
type of critical points (not the limit cycle), then such models are nontypical from the point
of view of the structural stability. On the other hand, if we consider the CDM models
perturbed by Chaplygin gas then we obtain the phase portrait equivalent to LCDM.

While CDM system is structurally unstable because of the presence of non-hyperbolic
critical points, the LCDM model is structurally stable. The following statement will char-
acterize structurally stable dynamical system of Newtonian type describing perturbation
of CDM models.

Let us consider more complicated C∞ class potential function Ṽ (x) than single in-
verted well potential (see Fig. 6) for example with two maximum points. Thus must exist
minimum critical points. But its presence means that we have a centre in the phase space,
i.e. the system is structurally unstable.

Corollary 1 If V is C∞ function of scale factor (or redshift), then there is only one differ-
entiate type of the critical point (modulo diffeomorphism) which determines the structurally
stable global phase portrait.

4for comparison see [46, p. 32] where the corresponding phase portraits in the variables (H , ̺) were
reproduced with and without the circle at infinity
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Figure 4: The phase portraits for phantom-like perturbation of the CDM model. The both
systems are structurally unstable because of the presence of degenerated critical points
at infinity. The critical point (0,∞) represents a big-rip singularity characteristic for the
phantom cosmology. In this case the scale factor x as well as its time derivative are infite
at finite time. In the right figure appears an additional critical point of saddle type in the
case of the negative cosmological constant.

Figure 5: The phase portraits for the both LCDM models with positive (left) and negative
(right) cosmological constants perturbed by the phantom contribution. They are struc-
turally unstable because of presence of degenerate critical points at the circle at infinity.
At the critical point (0,∞) the big bang singularity is glued with the big ripe one. Note
that both phase portraits are topologically equivalent.
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Figure 6: More complicated evolutional scenarios on (x, x′) plane.

This global dynamics is equivalent to the LCDM one. Finally the LCDM model is the
simplest structurally stable generic perturbation of the CDM model which is nongeneric.
The emergence of the LCDM model one can understand as a transition from a zero measure
set of a dynamical system on the plane toward such which forms the open and the dense
subsets in an ensemble of the dynamical systems on the plane – models of the deterministic
processes.

5 Emergence of new properties of the model through the

bifurcation

In our discussion it would be useful to consider a common approach to reduction in physics,
so called deductive criterion of reducibility of Nagel [47]. In this conception reduction is
a relation of derivation between upper-level and base-level theories. In upper-level theory
has termed not already in the base-level one, the terms must be connected using bridge
laws.

Let us consider two models which must be connected using the cosmological parameter.
This parameter plays the role of control parameter in the model and we assume that it
assumes zero (vanishes) in the basal model. We are looking for weakly emergent properties
of the model which ca be derived (via bifurcation) from the complete knowledge of the
basal model information. For this aims we use bifurcation theory, from that information
about new unveiling properties of the system can be predicted, at least in principle as we
change the control parameter. Then in principle we can derive the system behavior because
we can perform bifurcation analysis answering the question how the structure of the phase
space qualitatively changes as parameter Λ is moved. As a result we can predict its future
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behavior wit complete certainty. Such a point of view seems to be very close traditional
conceptions of emergence (Broad, Popper, Nagel) that focus on unpredictability properties
of upper-level model even given complete the basal information.

Let us illustrate our point of view in the very simple but instructive example. The
dynamics of the flat cosmological models the the R-W symmetry of space-like section, cos-
mological constant and without the matter (only for simplicity of presentation) is governed
by very simple equation (one-dimensional system):

ẋ = −x2 +
Λ

3
, (24)

where x = H is Hubble parameter which measures average rate of expansion of the Uni-
verse; Λ is here the cosmological constant parameter; ˙ denotes differentiation with respect
to the cosmological time.

Of course the above system can be simply integrated in quadratures. Calculation gives
√

3

Λ
Arth

√

3

Λ
x = (t − t0) (25)

or

th[(t − t0)

√

3

Λ
] =

√

3

Λ
x, x(t) =

√

3

Λ
th(

√

3

Λ
(t − t0)),

where t0 is integration constant. The equation (24) can be also integrated for the special
case of Λ = 0:

x(t) =
1

t − t0
. (26)

Note that there is no transition from the solution (25) to (26) as Λ → 0 although such
a transition exist on the level of the dynamical equation.

One can observe on this example how same small changes right hand side of the system
dramatically changes its solution. As a result in this system and solution emerges new
asymptotic states representing de Sitter model.

The bifurcation theory serve to clarify the emergence of new properties (sometimes
unexpected) of the system without the solving this equation. Let us consider system
(?) in the framework of bifurcation theory. For Λ > 0 there are two critical points

ẋ = 0 at x ±
√

Λ
3 . From the physical point of view they are representing de Sitter

model (expanding and contracting). Derivative f(x) (ẋ = f(x)), Df(x, µ) = −2x and

Df(±
√

Λ
3 ,Λ) = ∓2

√

Λ
3 l and we can see that the critical point at x =

√

Λ
3 is stable while

the critical point x = −
√

Λ
3 is unstable. For Λ = 0, there is only one critical point at x = 0

and it is a nonhypebolic critical point since Df(0, 0) = 0; the vector field f(x) = −x2 is
structurally unstable; Λ = 0 is a bifurcation value. For Λ < 0 there are no critical points.
The phase portraits for this differential equation are shown in Fig 7.
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��
@@

��
@@
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��
@@

��
@@
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��

u u

Figure 7: The phase portraits for flat FRW model and the cosmological constant of
different signs
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In this case we have W s(
√

Λ
3 ) = (−

√

Λ
3 ,∞) and W u(−

√

Λ
3 ) = (−∞,

√

Λ
3 ) as a stable

and unstable manifolds respectively. And for Λ = 0 the one–dimensional center manifold
is given by W c(0) = (−∞,∞). All of the pertinent information concerning the bifurcation
that takes place in this system at Λ = 0 is captured in the bifurcation diagram shown in
Fig(**). The curve Λ

3 −x2 = 0 determines the position of the critical points of the system,
a solid curve is used to indicate a family of stable critical points while a dashed curve is
used to indicate a family of unstable critical points. This type of bifurcation is called a
saddle-mode bifurcation.

The system under consideration constitutes only example of dynamical system analysis
of the system cosmological origin but there are many other system with some parameter
which shows hidden and unexpected properties as parameter varies. Let us remember
some of them. In the problem of the motion star around the elliptic galaxy appears
Henon, Heiles [48] hamiltonian system. This system possesses the energy first integral
E and if E > Ecrit then transition to the chaotic behavior appears. Another example
of bifurcation and emergence of the cyclic behavior in the system of the limit cycle type
offers famous van der Pol equation ẍ + µ(x2 − 1)ẋ + x = 0. For µ = 0 the system is of
harmonic oscillator type and for µ > 0, van der Pol’s equation has a unique limit cycle
and it is stable [49]. The limit cycle is representing closed trajectory in the phase space
which attracts all trajectories from neighborhood.

In this case ǫ = 0 is bifurcation value parameter and limit cycle behavior is upper-level
emergent property. For the interesting discussion on emergence, basal and upper-level
models and reducibility see [50].

Also interesting experiences of emergence new type of dynamical behavior give us
Hopf bifurcation phenomena [49, s. 341]. This bifurcation can occur in the system with
parameter ẋ = f(x, µ) at a nonhyperbolic equilibrium point x0 when the matrix Df(x0, µ0)
had a simple pair of pure imaginary eigenvalue and no other eigenvalues with zero real
point. In the generic case Hopf bifurcation occurs where a periodic orbit is created as the
stability of equilibrium point xµ changes. This type of behavior plays important role in the
description route to turbulence scenario. It would be worthy to mention the important role
of Hopf bifurcation in Rulle-Takens scenario of route to deterministic chaos. The concept
of turbulence war originally introduced by Landau in 1944 and later revised by Ruelle
and Takens in 1941 [51]. According to Landau, turbulence is reached at the end of an
indefinite superposition of oscillatory bifurcations, each bringing its unveiling phase into
dynamics of the system. In Ruelle-Takens scenario infinite number of periodic behavior is
not required when nonlinearities are acting. They argue that turbulence should be treated
as a stochastic regime of deterministic chaos at which we have long term unpredictability
due to property of sensitive dependance on initial condition. This stage is reached only
after a finite and small number of bifurcation. For recent philosophical discussion of
significance of chaos see [52].

In conventional methodology of deriving Einstein equation one derives the equation
of motion from the Lagrangian which is sum of Lgrav - lagrangian for gravity & Lmatt =
Lmatt(g, φ) - lagrangian for matter source which we assume that depends on both metric
g and the scalar field φ. Therefore there are two different ways of introducing the cos-
mological constant. In the first approach we put them into the gravitational lagrangian,
i.e. Lgrav = (2κ)−1(R − 2Λg), where Λg is a parameter in the (low energy effective) ac-
tion just like the Newtonian gravitational constant κ. The second route is by shifting the
matter lagrangian Lmatt → Lmatt − 2λm. Therefor a shift is clearly equivalent to adding
cosmological constant 2κλm to the Lgrav [53].

The symmetry L → Lmatt − 2λm is a symmetry of matter sector. The matter equa-
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tion of motion do not care about λm. In the conventional approach gravity breaks this
symmetry. This is the root case of the so-called cosmological constant problem. As long
as gravitational field equation are in the form Eab = κTab, where Eab is some geometri-
cal quantity (Gab in G.R.) the theory cannot be invariant under the shifts of the form
T a

b → T a
b + ρδa

b . Since such shift are allowed by the matter sector it is very difficult to
imagine solution to cosmological constant within the conventional approach to gravity [54,
s. 11]. If the metric represents the gravitational degree of freedom that is varied in the
action and we demand full general covariance, we cannot avoid Lmatt

√−g coupling and
cant obtain of the equation of motion which are invariant under the shift Tab → Tab+Λgab.
Clearly a new dramatically different approach to gravity is required.

6 Conclusion

We always in the mathematical modeling of physical processes try to convey the features
of typical, garden – variety, dynamical systems. In mathematics the exceptional cases are
more complicated and numerous, and they interrupt the physical discussion. Moreover
dynamicists shared an opinion that such exceptional systems not arise very often because
they are atypical. In the history of mathematical dynamics we observe how we have
searched for generic properties. We would like to distinguish a class of phase portraits
that are far simpler than the arbitrary ones. This programme was achieved for dynamical
systems on the plane by Peixoto due to the conception of structural stability introduced
by Andronov and Leontovich in 1934. The criteria for structural stability rely upon two
supplementary notions: a perturbation of the phase portraits (or vector field) and the
topological equivalence (homeomorphism of the state phase). A phase portrait has the
property of structural stability if all sufficiently small perturbations of it have equivalent
phase portraits. For example if we consider a center type of critical points then the addition
of perturbation pointing outward results in a point repellor which is not topologically
equivalent to the center. This is a primary example of a structurally unstable system. In
the opposite case saddle type of critical point is structurally stable and the phase portrait
doesn’t change under small perturbation.

In this paper we define the class of FRW cosmological models filled by dark energy as a
two-dimensional dynamical systems of a Newtonian type. They are characterized through
the single smooth effective potential function of the scale factor or redshift. Among these
class of models we distinguish typical (generic) and exceptional (nongeneric) cases with
the help of structural stability notion and the Peixoto theorem. We find that the LCDM
model in opposition to the CDM model is structurally stable. We demonstrate that this
model represents a typical structurally stable perturbation of CDM one. Therefore the
transition from the CDM model of the Universe toward the LCDM one which includes the
effects of the cosmological constant can be understood as an emergence of the model from
the exceptional case to the generic one. This case represents a generic model in this sense
that small changes of its right-hand sides do not change the global phase portraits. In
the terms of the potential, the second order differential equation one can classify different
models of cosmic acceleration. It is shown that models with the accelerating phase (which
follows the deceleration) are natural and typical from the point of view of the dynamical
systems theory combined with the notion of structural stability.

It is interesting that the new class of Lambda perturbated solutions does not reduce
to the CDM model solutions (which reveals their new quality) although the corresponding
equation reduces to the CDM one after taken limit ΩΛ → 0. The small value of Lambda
parameter dramatically changes its asymptotic states (de Sitter asymptotic is emerged).
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The Universe is accelerating for some value of redshift transition ztrans ≃ 0.6 and this
phase of acceleration is followed by the deceleration phase dominated by matter. One
can say that the LCDM model is emerging from the CDM model as the Universe evolves.
This very simple two phases model of past evolution of the Universe give rise to its present
acceleration detected by distant supernovae. Therefore the simplicity and genericity are
the best guides to understanding of our Universe and its acceleration. More complicated
evolutional scenarios are exceptional in the space of all models with a 2-dimensional phase
space.

There are many different theoretical possibilities of explaining accelerating universe in
terms of dark energy (substantial approach) or using modification of gravity (nonsubstan-
tial approach). Among all candidates the LCDM model is favored by Bayesian selection
methods [55]. These methods indicate the best model in respect to admissible data. One
can ask why the LCDM model is the best one. Our answer is that LCDM possesses a
property of simplicity and in the same time flexibility with respect to the data. The latter
can be interpreted in the tools of the structural stability notion.

The observations indicates that we live in expanding Universe with current accelera-
tions. It seems that this acceleration phase proceeded the deceleration phase. Provided
that we assume that there was no other qualitative dynamical changes in whole evolution
of the universe (at early as well as late time) the LCDM model is sufficiently complex to ex-
plain such a simple evolution of the Universe. No simpler neither the more complex model
can be better description of the Universe dynamics. The future evolution of our universe
is eternal expansion with the accelerating phase according to the LCDM scenario. Other
possible futures given by other models are unjustified because of the structural instability.
Such futures are highly improbable because they require a very special fine-tuned model
to the reality.

It seems that there is possibility of an ideal description of the physical reality in
such a way that our model is no more a model but described reality itself. In this case
the structural stability or instability does not matter. But when as in cosmology we
have a bunch of models which very roughly describe the universe evolution (the effective
theories) they should accommodate the reality inside the error margin generated by the
perturbation. But this feature is possessed by the structural stable models only. This is
an argument in favour of dealing with structural stable models in cosmology. We have
found the only structural stable two-phase model of universe dynamics with a deceleration
and then acceleration phase is the LCDM model.
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